NIH Public Access Policy:
Basics & Beyond*

Amy Studer, RN, MSN, MSLIS, AHIP
Blaisdell Medical Library
HS-NIHPAPhelp@ucdavis.edu

June 7, 2017

* This presentation developed in collaboration with Christine Hotz at the UC Davis CTSC
Objectives for today’s session:

• Describe the NIH Public Access Policy for Publications
• Clarify some common confusions
• Identify steps for complying with the policy
• Demonstrate how to use MyNCBI to document compliance
• Identify resources for help
Policy Details & Confusions
NIH Public Access Policy

“To advance science and improve human health, NIH makes the peer-reviewed articles it funds publicly available on PubMed Central. The NIH public access policy requires scientists to submit final peer-reviewed journal manuscripts that arise from NIH funds to PubMed Central immediately upon acceptance for publication.”

http://publicaccess.nih.gov/
NIH Public Access Policy

“To advance science and improve human health, NIH makes the peer-reviewed articles (1) it funds publicly available on PubMed Central (2). The NIH public access policy requires scientists to submit (3) final peer-reviewed journal manuscripts (4) that arise from NIH funds (5) to PubMed Central immediately upon acceptance for publication (6).”

http://publicaccess.nih.gov/
(1) **peer-reviewed articles**

Applies to journal articles, not books or conference proceedings.

Accepted for publication in a journal on or after April 7, 2008.

(2) **PubMed Central (PMC) is not PubMed**

PubMed includes only citations and abstracts of articles, while PubMed Central carries the full text of the paper.
(3) **scientists to submit**

Publications can be submitted by the publisher, an author, a PI, or a delegate. The process is typically determined by the publisher.

NIH-funded PIs are responsible for submitting or having someone submit for them.
(4) **Final peer-reviewed journal manuscripts**

Definition: the authors’ final manuscript that was accepted by the publisher, usually incorporating any edits resulting from peer-review process.

Not the galley proofs, not the published article, not a copy-edited version from the publisher.

Frequently the biggest barrier to compliance is not having access to the authors’ final version of the manuscript.

That said, over 50% of the time the publisher deposits the publisher’s final pdf.
Policy Details & Confusions

(5) arise from NIH funds
Direct funding to PIs as well as those who benefit from services and training from certain NIH-centers (such as the CTSC).

(6) immediately upon acceptance for publication
Immediate deposit required.
Up to 12 month embargo is acceptable at publisher’s request.
Why do we care?

NOT-OD-12-160

For non-competing continuation grant awards with a start date of July 1, 2013 or beyond:

1) NIH will delay processing of an award if publications arising from it are not in compliance with the NIH public access policy.

2) Investigators will need to use My NCBI to enter papers onto progress reports. Papers can be associated electronically using the RPPR, or included in the PHS 2590 using the My NCBI generated PDF report.

Why else do we care?
February 22, 2013:

The White House issued a directive that requires **Federal agencies** with annual spending of more than $100M in Research & Development to develop plans to make the results that flow from the research they fund openly **available to the public within a year of publication**. Such results include **peer-reviewed publications** and **digital data**.

https://www.whitehouse.gov/blog/2013/02/22/expanding-public-access-results-federally-funded-research
White House OSTP

Article and Data Sharing Requirements by Federal Agency

SPARC: http://researchsharing.sparcopen.org/

Some of the agencies:
Systems & Processes
NIHPAP: Interacting systems

- Create BioSketches using SciENcv
<table>
<thead>
<tr>
<th>System</th>
<th>Unique Manuscript Identifier</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>PubMed</td>
<td>PMID</td>
<td>Database of information about journal articles</td>
</tr>
<tr>
<td>PMC (PubMed Central)</td>
<td>PMCID</td>
<td>Database of full-text journal articles</td>
</tr>
<tr>
<td>NIH Manuscript Submission System (NIHMS)</td>
<td>NIHMSID</td>
<td>System for uploading article manuscripts into PMC</td>
</tr>
<tr>
<td>MyBibliography in MyNCBI</td>
<td></td>
<td>System for PIs & Authors to manage, document, & report compliance to NIH (RPPRs, BioSketches, PHS 2590)</td>
</tr>
</tbody>
</table>
Human α-defensin 6 promotes mucosal innate immunity through self-assembled peptide nanonets.

Abstract
Defensins are antimicrobial peptides that contribute broadly to innate immunity, including protection of mucosal tissues. Human α-defensin (HD) 6 is highly expressed by secretory Paneth cells of the small intestine. However, in contrast to the other defensins, it lacks appreciable bactericidal activity. Nevertheless, we report here that HD6 affords protection against invasion by enteric bacterial pathogens in vitro and in vivo. After stochastic binding to bacterial surface proteins, HD6 undergoes ordered self-assembly to form fibrils and nanonets that surround and entangle bacteria. This self-assembly mechanism occurs in vivo, requires histidine-27, and is consistent with x-ray crystallography data. These findings support a key role for HD6 in protecting the small intestine against invasion by diverse enteric pathogens and may explain the conservation of HD6 throughout Hominidae evolution.

Comment in
Immunology. HD6 defensin nanonets. [Science. 2012]

Publication Types, MeSH Terms, Substances, Grant Support

Publication Types
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't

PMCID and link missing
Human α-defensin 6 promotes mucosal innate immunity through self-assembled peptide nanonets.

Abstract

Defensins are antimicrobial peptides that contribute broadly to innate immunity, including protection of mucosal tissues. Human α-defensin (HD) 6 is highly expressed by secretory Paneth cells of the small intestine. However, in contrast to the other defensins, it lacks appreciable bactericidal activity. Nevertheless, we report here that HD6 affords protection against invasion by enteric bacterial pathogens in vitro and in vivo. After stochastic binding to bacterial surface proteins, HD6 undergoes ordered self-assembly to form fibrils and nanonets that surround and entangle bacteria. This self-assembly mechanism occurs in vivo, requires histidine-27, and is consistent with x-ray crystallography data. These findings support a key role for HD6 in protecting the small intestine against invasion by diverse enteric pathogens and may explain the conservation of HD6 throughout Hominidae evolution.
Human α-Defensin 6 Promotes Mucosal Innate Immunity Through Self-Assembled Peptide Nanoets

Huihung Chu,1 Marzena Pazgier,2 Grace Jung,3 Sean-Paul Nuccio,1 Patricia A. Castillo,1 Maarten F. de Jong,2 Maria G. Winter,2 Sebastian E. Winter,2 Jan Wehkamp,1 Bo Shen,2 Nita H. Salzman,2 Mark A. Underwood,2 Renee M. Tsollis,2 Gienn M. Young,1 Wuyuan Lu,2† Robert I. Lehrer,1 Andreas J. Bäumer,† Charles L. Bevins3††

Defensins are antimicrobial peptides that contribute broadly to innate immunity, including protection of mucosal tissues. Human α-defensin (HD) 6 is highly expressed by secretory Paneth cells of the small intestine. However, in contrast to the other defensins, it lacks appreciable bactericidal activity. Nevertheless, we report here that HD6 affords protection against invasion by enteric bacterial pathogens in vitro and in vivo. After stochastic binding to bacterial surface proteins, HD6 undergoes ordered self-assembly to form fibrils and nanotubes that surround and entangle bacteria. This self-assembly mechanism occurs in vivo, requires histidine-27, and is consistent with x-ray crystallography data. These findings support a key role for HD6 in protecting the small intestine against invasion by diverse enteric pathogens and may explain the conservation of HD6 throughout Metazoa evolution.

Paneth cells are specialized small intestinal epithelial cells that maintain intestinal homeostasis, in part by expressing and secreting antimicrobial peptides and proteins (7–3). Human Paneth cells express two peptides, β-defensins HD5 and HD6, deficiencies of which are associated with Crohn’s disease, a chronic inflammatory bowel disease (3–5). HD5 is broadly antimicrobial (6–8) and can shape the gut microbiota in vivo (9). In contrast, HD6 exerts little antibacterial activity (Fig. S1) (8, 9), and its function is unknown.

To investigate HD6, we developed a transgenic mouse model wherein HD6 gene (DEP6) expression was controlled by its endogenous promoter and restricted to Paneth cells (Fig. S2, A and B). Transgenic HD6 expression occurred at levels commensurate with endogenous human and murine Paneth cell α-defensin production and did not alter expression of other murine Paneth cell–derived antimicrobial (poly)peptides (Fig. S2, C and D).

When HD6 transgenic mice and littermate controls were challenged intragastrically with 2 × 10⁶ colony forming units (CFU) of Salmonella Typhimurium (STM), 50% of wild-type animals but no transgenic mice had died 6 days after infection (P < 0.05) (Fig. 1A). Consistent with HD6’s lack of direct antibacterial activity, the intestinal lumen of transgenic and wild-type mice contained similar bacterial numbers 4 days after infection. However, STM counts were lower by a factor of 100 in Peyer’s patches (P < 0.001) and lower by a factor of 10 in spleens (P < 0.001) of

Downloaded from http://science.sciencemag.org on January 31, 2017
Human α-defensin 6 promotes mucosal innate immunity through self-assembled peptide nanonets

Abstract

Defensins are antimicrobial peptides that contribute broadly to innate immunity, including protection of mucosal tissues. Human α-defensin (HD6) is highly expressed by secretory Paneth cells of the small intestine. However, in contrast to the other defensins, it lacks appreciable bactericidal activity. Nevertheless, we report here that HD6 affords protection against invasion by enteric bacterial pathogens in vitro and in vivo. After stochastic binding to bacterial surface proteins, HD6 undergoes ordered self-assembly to form fibrils and nanonets that surround and entangle bacteria. This self-assembly mechanism occurs in vivo, requires histidine-27, and is consistent with X-ray crystallography data. These findings support a key role for HD6 in protecting the small intestine against invasion by diverse enteric pathogens, and may explain the conservation of HD6 throughout Hominidae evolution.

Paneth cells are specialized small intestinal epithelial cells that maintain intestinal homeostasis, in part by expressing and secreting antimicrobial peptides and proteins (1-2). Deficiencies of two human Paneth cell peptides, α-defensins HDS and HD6, are associated with Crohn’s disease, a chronic inflammatory bowel
NIH Public Access Policy Website

http://publicaccess.nih.gov/index.htm
http://guides.lib.ucdavis.edu/nih_mandate
Submission Paths
NIHPAP: Interacting systems

- Create BioSketches using SciENcv
Different Paths to Submission

NIH Public Access Policy: Submission Methods and How to Demonstrate Compliance

<table>
<thead>
<tr>
<th>Method A</th>
<th>Method B</th>
<th>Method C</th>
<th>Method D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author publishes in a journal that submits all NIH-funded final published articles to PMC, no fee.</td>
<td>Author requests a publisher to submit an individual NIH-funded final published article to PMC (usually for a fee).</td>
<td>Author self-submits the final peer-reviewed manuscript to NIHMS; NIHMS prepares manuscript for posting to PMC.</td>
<td>Publisher submits the final peer-reviewed manuscript to NIHMS on behalf of NIH-funded authors (no fee); NIHMS prepares manuscript for posting to PMC.</td>
</tr>
<tr>
<td>Which journal publishers participate?</td>
<td>See list of participating journals.</td>
<td>Author makes specific arrangements with select publishers.</td>
<td>Author reviews the copyright agreement form before signing to confirm publisher policy is consistent with NIH Policy requirements. Select publishers voluntarily provide service.</td>
</tr>
<tr>
<td>Which version of the work will be posted to PMC?</td>
<td>Final published article</td>
<td>Final published article</td>
<td>Final peer-reviewed manuscript</td>
</tr>
<tr>
<td>Who submits the work to PMC/NIHMS?</td>
<td>Publisher submits to PMC.</td>
<td>Publisher submits to PMC.</td>
<td>Publisher submits to NIHMS. This is frequently not an automatic process, i.e., author needs to request service.</td>
</tr>
<tr>
<td>What is the submission timeframe?</td>
<td>After the publisher has prepared the final published article.</td>
<td>After the publisher has prepared the final published article.</td>
<td>Upon acceptance of publication. (Authors should confirm that this is stated in the copyright agreement form).</td>
</tr>
<tr>
<td>Who reviews and approves the submission?</td>
<td>Publisher</td>
<td>Publisher</td>
<td>Two emails sent to author from NIHMS: 1. "Approve PDF Receipt" 2. "Approve Web Version"</td>
</tr>
<tr>
<td>What is the maximum embargo period?</td>
<td>12 months</td>
<td>12 months</td>
<td>12 months</td>
</tr>
<tr>
<td>What is proof of compliance or papers within three months of publication?</td>
<td>PMCID or "PMC Journal – In Process."</td>
<td>PMCID or "PMC Journal – In Process."</td>
<td>PMCID or NIHMS ID. (Use of "PMC Journal – In Process" is NOT allowed for Method C)</td>
</tr>
<tr>
<td>What is proof of compliance for papers three months post publication?</td>
<td>PMCID</td>
<td>PMCID</td>
<td>PMCID</td>
</tr>
</tbody>
</table>

*Original source - NIH chart
chart adapted by BERNARD BECKER MEDICAL LIBRARY and UC DAVIS CLINICAL and TRANSLATIONAL SCIENCE CENTER*

Publisher’s Websites

Access Policies

Immediately after publication, authors may post the accepted version of the paper on the author's personal or institutional archival Web site. In addition, one author is provided a "referrer" link, which can be posted on a personal or institutional Web page and through which users can freely access the final, published paper on the Science Web site.

For research papers created under grants for which the authors are required by their funding agencies to make their research results publicly available (for example, from NIH, Howard Hughes Medical Institute, or Wellcome Trust), Science allows posting of the accepted version of research content (Research Articles and Reports) to the funding body's archive or designated repository (such as PubMed Central) no sooner than six months after publication, provided that a link to the final version of the paper published in Science is included. The accepted version is the version of the paper accepted for publication after changes resulting from peer review, but before editing by Science copyediting staff, image quality control, and production of the final PDF.

http://www.sciencemag.org/site/feature/contribinfo/prep/gen_info.xhtml#access
Some publisher’s websites make it seem that you are required to pay APCs in order to post your NIH-funded article to PMC.

While some authors may find value in paying for APCs, it is not a requirement to post to PMC.

Open Choice allows you to publish open access in the majority of Springer’s subscription-based journals.

Open Choice benefits for you and your readers
- High visibility – All articles are made freely available online for everyone, immediately upon publication
- Easy compliance with open access mandates, as all articles are CC BY licensed
- The final article can be reused and immediately deposited in any repository
- Authors retain the copyright to their work
- Automatic export triggered to PubMed Central/Europe PubMed Central (PMC)

Publication fee
- Visit our open access funding page to find out how the open access publication charge can be covered.
- Publishing Open Choice articles involves an open access publication fee of US$ 3000/EUR 2200 (excl. VAT). You can choose to pay by credit card or to receive an invoice.
- Our Springer Compact agreements are in place to cover the open access charges if you belong to a participating institution. For more information, please visit http://www.springer.com/us/open-access/springer-open-choice/springer-compact

http://www.springer.com/us/open-access/springer-open-choice
Publisher’s Websites

Authors: Be alert to publisher’s questions about funding during the article submission and acceptance process.

- Wording of questions about funding support vary by journal

- Sometimes confusing if the submitter is not the PI of a cited grant, or if submitter does not receive monetary support from NIH or other funding body
Different Paths to Submission

<table>
<thead>
<tr>
<th>Method A</th>
<th>Method B</th>
<th>Method C</th>
<th>Method D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author publishes in a journal that submits all NIH-funded final published articles to PMC; no fee.</td>
<td>Author requests a publisher to submit an individual NIH-funded final published article to PMC (usually for a fee).</td>
<td>Author self-submits the final peer-reviewed manuscript to NIHMS; NIHMS prepares manuscript for posting to PMC.</td>
<td>Publisher submits the final peer-reviewed manuscript to NIHMS on behalf of NIH-funded authors (no fee); NIHMS prepares manuscript for posting to PMC.</td>
</tr>
</tbody>
</table>

Which journal publishers participate?

- See list of participating journals.
- Author makes specific arrangements with select publishers.
- No list of publishers—author reviews the copyright agreement form before signing to confirm publisher policy is consistent with NIH Policy requirements. Author reviews the copyright agreement form before signing to confirm publisher policy is consistent with NIH Policy requirements. Select publishers voluntarily provide service.

Which version of the work will be posted to PMC?

- Final published article
- Final published article
- Final peer-reviewed manuscript
- Final peer-reviewed manuscript

Who submits the work to PMC/NIHMS?

- Publisher submits to PMC.
- Publisher submits to PMC.
- Author or third party such as a lab assistant or research coordinator (non-publisher)
- Publisher submits to NIHMS. This is frequently not an automatic process, i.e., author needs to request service.

What is the submission time frame?

- After the publisher has prepared the final published article.
- After the publisher has prepared the final published article.
- Upon acceptance of publication. (Authors should confirm that this is stated in the copyright agreement form)
- Upon acceptance of publication. (Authors should confirm that this is stated in the copyright agreement form)

Who reviews and approves the submission?

- Publisher
- Publisher
- Two emails sent to author from NIHMS: 1. “Approve PDF Receipt” 2. “Approve Web Version”

What is the maximum embargo period?

- 12 months
- 12 months
- 12 months
- 12 months

What is proof of compliance for papers within three months of publication?

- PMCID or “PMCID Journal – In Process.”
- PMCID or “PMCID Journal – In Process.”
- PMCID or NIHMS ID. (Use of “PMCID Journal – In Process” is NOT allowed for Method C)
- PMCID or NIHMS ID. (Use of “PMCID Journal – In Process” is NOT allowed for Method D)

What is proof of compliance for papers three months post publication?

- PMCID
- PMCID
- PMCID
- PMCID

KEY

- PMCID: PubMed Central Reference Number
- PMC: PubMed Central
- NIHMS: NIH Manuscript Submission system
- NIHMS ID: NIH Manuscript Submission system Reference Number

Original source - NIH chart

Chart adapted by BERNARD BECKER MEDICAL LIBRARY and UC DAVIS CLINICAL AND TRANSLATIONAL SCIENCE CENTER

NIHMS Process

Manuscript Submission Process

1. Deposit Files
2. Initial Approval
3. NIHMS Conversion
4. Final Approval
5. PMCID Assigned

Available in PMC

Learn More
NIHMS (NIH Manuscript Submission) System

Accepts submissions from:

● Publisher (Method D)

● Author (any author or coauthor) (Method C)

● PI or delegate (even if not an author on the publication)

● Anyone else given access to the author’s files (administrative personnel, graduate students, etc.)

● Depending on who deposits, process requires 1-2 approval steps before PMCID is granted.

● Timely response to email is important. Don’t ignore emails from: nihms-help@ncbi.nlm.nih.gov

http://nihms.nih.gov/
NIHMS Deposit Checklist

Before submitting:
- Review journal’s policy with regard to NIH PAP

Items to have on hand for submitting:
- Login credentials (correct and consistent)
- Exact titles of manuscript & journal, author name (or PMID)
- Embargo time frame required by publisher
- Some publishers/journals require a link back to the publisher’s online article
- Manuscript files—almost any format accepted
- NIH or HHMI grant number(s) and PI(s) name associated with the article
Login to NIHMS

https://www.nihms.nih.gov/db/sub.cgi
NIHMS manuscript upload step-by-step

- NIHMS step-by-step help files are an excellent resource to guide you through your first submission

https://nihms.nih.gov/db/sub.cgi?page=stepbystep

https://nihms.nih.gov/db/sub.cgi?page=slides&slides_id=non_author_deposit
Monitoring manuscripts within the system:

• Search by PMID in NIHMS to see if a manuscript has been deposited.

• After submission, NIHMS sends an email notification to PIs notifying them that their grant has been cited.

• You can request to watch or take over a manuscript in NIHMS.
Being Proactive

- Determine Public Access status for manuscript early in the process (applicability, publisher’s policy, who will assume role of uploading and reviewing manuscript).

- Upload **final version of manuscript with peer-reviewed changes upon acceptance** by publisher.

- Troubleshoot password problems with correct help system (eRA Commons vs. NIHMS vs. MyNCBI).

- Respond promptly to requests from the NIHMS system for corrections or approval of manuscript upload and web version.
Monitoring & Documenting Compliance
NIHPAP: Interacting systems

- Create BioSketches using SciENcv

Cites the grant
Link MyNCBI to eRA Commons

Instructions: http://guides.lib.ucdavis.edu/content.php?pid=628529&sid=5239759
Adding a Citation From PubMed

 Collaborators (532)

Abstract
To further understanding of the genetic basis of type 2 diabetes (T2D) susceptibility, we aggregated published meta-analyses of genome-wide association studies (GWAS), including 25,488 cases and 63,964 controls of European, east Asian, south Asian and Mexican and Mexican American ancestry. We observed a significant excess in the directional consistency of T2D risk alleles across ancestry groups, even at SNPs demonstrating only weak evidence of association. By following up the strongest signals of association from the trans-ethnic meta-analysis in an additional 21,491 cases and 56,647 controls of European ancestry, we identified seven new T2D susceptibility loci. Furthermore, we observed considerable improvements in the fine-mapping resolution of common variant association signals at several T2D susceptibility loci. These observations highlight the benefits of trans-ethnic GWAS for the discovery and characterization of complex trait loci and emphasize the importance of integrating population genetic data with clinical studies.
Managing Compliance with MyBibliography

Select Display Settings:
- Award view
- Public Access Compliance

http://www.ncbi.nlm.nih.gov/books/NBK53595/
Managing Compliance with MyBibliography

http://www.ncbi.nlm.nih.gov/books/NBK53595/
Managing Compliance with My Bibliography

Use MyNCBI’s My Bibliography Award View to manage compliance:

Public Access Compliance Monitor (PACM)

Provides an institutional view for UC Davis of compliant (good news!), potentially problematic (non-compliant), and in-process articles, from the NIH’s perspective.

To request a custom PACM report:
Contact: hs-nihpaphelp@ucdavis.edu
Sample PACM Report

<table>
<thead>
<tr>
<th>PMID</th>
<th>PMCID</th>
<th>NIHMSID</th>
<th>Grant Number</th>
<th>PI Name</th>
<th>Publication Date</th>
<th>NIHMS file deposited</th>
<th>NIHMS initial approval</th>
<th>NIHMS tagging complete</th>
<th>NIHMS final approval</th>
<th>Article Title</th>
<th>First Author Name</th>
<th>Journal Title</th>
<th>Journal Publisher</th>
<th>Method</th>
<th>NIHMS Person</th>
</tr>
</thead>
<tbody>
<tr>
<td>24951927</td>
<td>603538</td>
<td></td>
<td></td>
<td></td>
<td>9/1/2014</td>
<td>5/9/2014</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24447138</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1/1/2014</td>
<td></td>
</tr>
<tr>
<td>24390131</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6/1/2014</td>
<td></td>
</tr>
<tr>
<td>22449252</td>
<td>474846</td>
<td></td>
<td></td>
<td></td>
<td>4/9/2012</td>
<td></td>
</tr>
<tr>
<td>22506841</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5/4/2012</td>
<td></td>
</tr>
<tr>
<td>23758331</td>
<td>492817</td>
<td></td>
<td></td>
<td></td>
<td>7/5/2013</td>
<td>6/13/2013</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23092440</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10/1/2012</td>
<td></td>
</tr>
<tr>
<td>24336395</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5/25/2014</td>
<td></td>
</tr>
<tr>
<td>25045133</td>
<td>626750</td>
<td></td>
<td></td>
<td></td>
<td>9/1/2014</td>
<td>9/8/2014</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22265472</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1/15/2012</td>
<td></td>
</tr>
<tr>
<td>24468390</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3/1/2014</td>
<td></td>
</tr>
<tr>
<td>22560702</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8/1/2012</td>
<td></td>
</tr>
<tr>
<td>24075528</td>
<td>654906</td>
<td></td>
<td></td>
<td></td>
<td>1/1/2014</td>
<td>1/12/2015</td>
<td>1/14/2015</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24992514</td>
<td>656420</td>
<td></td>
<td></td>
<td></td>
<td>8/5/2014</td>
<td>1/15/2015</td>
<td>1/15/2015</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24992514</td>
<td>656420</td>
<td></td>
<td></td>
<td></td>
<td>8/5/2014</td>
<td>1/15/2015</td>
<td>1/15/2015</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PubMed Publication Monitoring

- Search by author or PI name
 Ex: Lewin HA[author] OR Lewin HA[investigator]

- Search by grant number or portion thereof
 Ex: P30CA093373[gr] OR CA093373[gr] OR NIH[gr]

- AND/NOT “pmc nihpa compliant”[filter]

- Save search in MyNCBI and set up automatic email alerts

Want advice about setting up a search strategy?
Contact: hs-nihpaphelp@ucdavis.edu
Resources
Help Desk Contacts

NIHMS problems (not log in issues)

- nihms-help@ncbi.nlm.nih.gov
- Report form submission
 - https://nihms.nih.gov/db/sub.cgi?page=email&from=home

eRA Commons Help Desk

- Phone 866-504-9552 or 301-402-7469
- Password help 301-402-7469

NCBI

- info@ncbi.nlm.nih.gov

PubMed

Consultation & Training

Consultation
● Individual, groups, departments, centers by request
● PACM reports, by request

Education/Training – CTSC and Blaisdell Medical Library
● Seminars for scholars and junior faculty; PIs and staff
● Training on demand

Contact: hs-nihpaphelp@ucdavis.edu
Questions?????

hs-nihpaphelp@ucdavis.edu