A team of Percheron horses and a sense of anticipation accompanied scores of guests and members of the UC Davis School of Veterinary Medicine at the June 15 dedication of Gladys Valley Hall.

With the opening of this essential classroom building, the school is about one-third of the way toward realizing its $354 million long-range facilities plan.

Gladys Valley Hall is the instructional heart of the emerging veterinary campus in the Health Sciences District, which includes the Veterinary Medical Teaching Hospital with its clinical education programs and instructional laboratories, the Vet Med 3A building under construction, and several other facilities.

“Gladys Valley Hall will serve as a home for lifelong learning, providing both a contemporary environment for DVM and MPVM students and a welcoming center for alumni events and continuing education,” says Bennie Osburn, dean.

The two-story building will accommodate large-scale lectures, classroom discussions, computer study sessions, student volunteer activities, informal faculty-student exchanges, and alumni gatherings.

The building features two large auditoriums, five classrooms and four seminar rooms, several conference areas, and a computer classroom/office suite for the Master of Preventive Veterinary Medicine program. It also contains rooms for the study of diagnostic imaging and clinical practice.

An alumni gallery, four quiet zones for individual or group study, space for student organizations, and homerooms for each of the first three class years are among the special features. A mother’s room, seven showers and 450 lockers round out the list of amenities.

The school is about one-third of the way toward realizing its $354 million long-range facilities plan.

Construction costs totaled $27 million and came from university and other public funds as well as private sources. Alumni and other friends of the school gave nearly $2.7 million to expand the facility by 12 percent and provide additional upgrades and instructional equipment.

Continued on page 3
Researchers Identify Feline Gene Mutation That Causes Heart Disease

A spontaneouse gene mutation responsible for a devastating heart disease in cats was identified in Maine coon cats and reported last October by a team of researchers at UC Davis, The Ohio State University and Baylor College of Medicine.

The disease, hypertrophic cardiomyopathy, also a leading cause of sudden death in young human athletes (as in the case of Boston Celtics’ Reggie Lewis in 1993 and Loyola Marymount University basketball player Hank Gathers in 1990), causes an excessive thickening of the muscle of the left ventricle of the heart. Hypertrophic cardiomyopathy in humans and Maine coon cats appears microscopically as poorly aligned muscle fibers, thought to interfere with the electrical activity of the heart. The disease occurs in one in every 500 humans and is the most common heart disease in domestic cats. Hypertrophic cardiomyopathy is most frequently diagnosed in non-purebred middle-aged cats, although it has been diagnosed in cats ranging from 1 to 13 years of age.

“The prognosis for severely affected cats is often poor,” says veterinary cardiologist Mark Kittleson, a co-author of the study. “Preventing the disease from occurring by identifying affected cats before they are bred can save a lot of heartache.”

Dr. Kittleson says the finding paves the way toward developing a screening test to help breeders rid Maine coon cats of the gene mutation, and may provide a valuable model for investigators in both veterinary and human medicine. The study began when Maine coon cat owner Marcia Munro notified Dr. Kittleson that she knew of several cats related to her cat that also had the disease. The study was supported by the Winn Foundation and its Ricky Fund, the Center for Companion Animal Health and private donors.

Toxicology Study Links Thimerosal to Immune Dysfunction in Mice

Collaborating cell biologists, toxicologists, pathologists and molecular biologists at UC Davis published a study in March that links immune system dysfunction in mice with thimerosal—a cheap and effective mercury-based preservative. Potential effects on embryonic neuron development led to the removal of thimerosal from many pediatric vaccines, but it is still used in influenza, diphtheria and tetanus vaccines, blood products and many over-the-counter pharmaceuticals.

The study shows how communication between calcium channels in mouse dendritic cells is dramatically garbled when exposed to thimerosal, reducing the immune system’s ability to respond to external factors.

“Dendritic cells play pivotal roles in overcoming viral and bacterial invaders by coordinating the immune system’s overall combat response,” says senior author of the study Isaac Pessah, toxicologist with the UC Davis School of Veterinary Medicine and director of the Children’s Center for Environmental Health and Disease Prevention. One dendritic cell can activate as many as 300 T-cells—white blood cells that help find and kill external agents that attack the immune system.

At concentrations as low as 20 parts per billion, thimerosal initiates inflammatory responses, and at concentrations of 200 parts per billion causes death of dendritic cells. Affected dendritic cells can quickly become “rogue,” producing misinformation that could activate aberrant and harmful immune responses. “Even one rogue dendritic cell can activate many inappropriate immune responses,” says Dr. Pessah.

“Our findings do not directly implicate thimerosal as a single causative agent for triggering neurodevelopmental disorders such as autism,” he says. “There is growing evidence that autism is several disorders that we now refer to as just one, and that some children with autism have unique immune cell composition and responses to antigens. The results of our work provide a framework to test the hypothesis that the genetic background of some individuals may render them especially susceptible to thimerosal.” Dr. Pessah will next study dendritic cells in humans with and without autism. The mouse study was funded by the National Institute of Environmental Health Sciences and the UC Davis M.I.N.D. Institute.

Researchers at the California Animal Health and Food Safety (CAHFS) Laboratory working with colleagues at the Lawrence Livermore National Laboratory are testing air sampling technology to speed up accurate detection of avian influenza, a viral disease that has spread from Southeast Asia to the Middle East, Europe and Africa, resulting in the deaths of millions of birds and at least 127 humans.

The scientists have tested the Smart Air Sampler System, a portable, lightweight air sampler about the size of a household coffee pot, to collect airborne viruses. The equipment, manufactured by Research International Inc. of Monroe, Washington, eliminates the need to catch and swab individual birds for biological samples. Diagnosticians then screen the samples using a rapid DNA test. Experimenting with the air sampler and rapid screening, Dr. Sharon Hietala of the CAHFS and her colleagues have detected two different bird viruses.

This technology—which can trim diagnostic time down from the current 3–12 days to only six hours—could be advantageous in veterinary diagnostics by minimizing human contact with potentially infected flocks, and reducing both the time and cost of collecting and testing samples from individual birds.

The air sampling units, if placed in high-risk environments such as poultry farms or live bird markets, could make a huge difference in animal disease detection and even public health response, says school dean Bennie Osburn.

“If global health officials take the next steps to fund training and place the tool at strategic sites, this diagnostic technology may help us battle avian influenza worldwide.”

Scientists hope, using the Smart Air Sampler System, to be able to sample hundreds to thousands of birds in as little as 10 minutes without handling or disturbing the flocks.
The VCA Lecture Theater, with its commemorative “take a seat” name plates, is ready for its first students when academic classes begin for 2006–07 and the Fall Symposium is held September 17.

Ongoing Facilities Commitment
Next Step Requires Bond Passage

Even as the ribbon is cut to open Gladys Valley Hall, university officials, legislators and private donors are pressing ahead with the $354 million plan to fully achieve expansion and modernization of the school’s infrastructure—both of which are required to maintain full accreditation status and accommodate anticipated growth.

Vet Med 3A is nearing completion. The six-story, $77 million teaching and research facility will house the J.D. Wheat Veterinary Orthopedic research Laboratory, clinical and necropsy space, and multipurpose teaching labs in 98,000 square feet.

The next step in the plan is to raise public and private support for Vet Med 3B, the building that will house School of Veterinary Medicine faculty and research programs, and bring core veterinary programs together in the Health Sciences District. The cost estimate to build the structure is currently $98.7 million.

Construction funding depends on passage of a $10.4 billion bond act—to build, modernize and rehabilitate public schools, community colleges and public universities—being placed before voters in November 2006.

If the bond passes, the school will be seeking additional private support to enable construction of Vet Med 3B.

Gladys Valley Hall
Continued from page 1

“The generosity and dedication of alumni and friends to provide a world-class learning environment for our veterinary students is truly remarkable. Their passion and belief in veterinary medicine and their willingness to invest in the education of future veterinarians help sustain UC’s enduring legacy and commitment to training the finest veterinarians in the world,” says John Pascoe, executive associate dean who has led the planning, design and construction of new facilities for the school.

The building is named for Gladys Valley, longtime friend of the school, horse lover and co-founder of the Wayne and Gladys Valley Foundation of Oakland, California. The school proudly honors both the foundation and family who took the lead in helping the school when the need for new facilities reached a crisis in 1998. The gift of $10.7 million—at that time the largest donation the school had ever received—jump-started building construction, inspired further giving, and helped the school regain full AVMA accreditation.

An alumni committee, headed by Niels Pedersen and Michael Floyd, raised nearly $3 million for the project. Among its distinctions, Gladys Valley Hall is the first campus building to seek certification under the United States Green Building Council’s LEED (Leadership in Energy and Environmental Design) rating system. Architects expect the facility to use one-third less energy than a building of standard design. Use of natural and recycled materials, natural light, evaporative cooling and natural ventilation, among other features, has already earned it a Best Practices Award for Overall Sustainable Design from California’s Higher Education Energy Partnership.

Students will be able to study, relax or confer between classes in their first-, second- or third-year veterinary student commons, which interconnect.

Construction funding depends on passage of a $10.4 billion bond act—to build, modernize and rehabilitate public schools, community colleges and public universities—being placed before voters in November 2006.

If the bond passes, the school will be seeking additional private support to enable construction of Vet Med 3B.
A UC Davis-led research team is studying how the deadly single-celled parasite, Toxoplasma gondii, moves from land to sea to infect and kill threatened Southern sea otters in California. Patricia Conrad, professor of parasitology and principal investigator, says, “Toxoplasma infections are one of several factors reducing the potential for sea otter population recovery.”

T. gondii can also cause serious illness in pregnant or immuno-compromised humans.

Sea otters most likely ingest T. gondii oocysts (eggs) shed in the feces of cats and transported via freshwater runoff to the marine ecosystem. Dr. Conrad. Research focuses on Elkhorn Slough and Morro Bay, where notable sea otter infections and deaths have been reported.

Less than a year into the project, the researchers have submitted several articles to scientific journals related to the following studies:

1) terrestrial ecology—researchers survey cat owners and sample cats and wild rodents for T. gondii parasites; 2) land-runoff ecology—scientists observe runoff patterns and create models to assess how T. gondii oocysts travel through near-shore waters into the sea; and 3) sea otter ecology—wildlife veterinarians and ecologists assess behavioral and dietary risk factors for parasite exposure.

Once the data have been gathered and analyzed, scientists will develop simulation models to assess how various strategies to reduce T. gondii in sea otters affect the risk of exposure.

A $1.86 million grant from the National Science Foundation-National Institutes of Health Ecology of Infectious Disease Grant Program supports scientific collaborators from UC Santa Cruz, the California Department of Fish and Game, the University of British Columbia, CSU Fresno and the Institute of Ecosystem Studies, all of whom are working with UC Davis investigators in the Wildlife Health Center, Bodega Marine Laboratory and the Center for Animal Disease Modeling and Surveillance.

While prospective students—966 in 2006—hold their breaths from October until April during admissions season, faculty members and private veterinary practitioners embrace a shared responsibility to select the students most likely to succeed in veterinary school and the profession.

The Admissions Committee comprises five faculty members and one private practitioner, who review student GPAs and GRE scores, letters of recommendation and veterinary experience, and evaluate academic and non-academic factors. By the time selected students receive acceptance news in April, their applications have been read a minimum of six times. Each Admissions Committee member contributes about 175 hours to the total review process. The practitioner selected to the Admissions Committee each year is among those who have served on the Admissions Advisory Committee.

The Admissions Advisory Committee assures that candidates who have unique experience, interest or quality do not get overlooked. About 20 private practitioners and faculty members identify the diverse, “uniquely promising” students with strong veterinary experience or an interest in less common veterinary fields such as food animal practice, lab animal medicine or research.

In addition to the advisory committee, three faculty members and three veterinary students consider and recommend qualified applicants through the Veterinary Medical Opportunity Program. The Veterinary Scientist Training Program committee evaluates prospective students who intend to pursue concurrent DVM and PhD degrees.

By the end of February, Admissions Committee members have decided who will be interviewed. In February and March 2006, the committee conducted half-hour interviews with 211 candidates. Thanks to new school facilities opening this year, the school has increased the entering class size from 122 to 131 students, the full complement approved by the California Legislature.

Dean Bennie Osburn says, “The admissions process is an extraordinary team effort. It respects the students who have prepared for years to get into veterinary school and carefully weighs who will best meet the broad requirements of the veterinary profession.”

Lisa Boyer (DVM, UC Davis, 2002), co-owner of Veterinary Relief Solutions, Inc., represented practitioners on the 2006 Admissions Committee.

“The committee's choices shape the future of veterinary medicine in California,” says Dr. Boyer. “As an older student entering a second career, I was fortunate that someone on the Admissions Committee looked at my application and saw that I was more than a GPA or GRE score. I wanted to do the same for others.

“Together, we worked to bring about a multi-faceted view of each candidate. I tended to ask more ‘real world’ questions representative of situations I encountered since graduating from veterinary school. I looked at each candidate as if I were hiring a new associate. I already knew that to make it to the interview, the applicant was smart—I was looking for common sense, an ability to think on one’s feet, and a realistic view of the veterinary profession. The class of 2010 has tremendous strengths and abilities—each student has something special to contribute.

“I was surprised by how many times an application is reviewed and with the number of exceptionally qualified candidates. I found the experience extremely worthwhile and necessary to ensure the fairness of our admissions process. By working together, we can ensure that our profession has the most capable and compassionate veterinarians possible.”

See the Guide for Prospective Students at www.vetmed.ucdavis.edu/StudentPrograms.
ALUMNI ACHIEVEMENT

THREE HONORED WITH SCHOOL’S HIGHEST AWARD

The School of Veterinary Medicine conferred its highest honor, the Alumni Achievement Award, to three alumni during the June 16 commencement ceremony.

James Moore, distinguished research professor, University of Georgia Department of Large Animal Medicine, was recognized for his contribution to understanding the pathophysiology of equine colic, endotoxemia and laminitis. (DVM 1974, UC Davis)

Marguerite Pappaioanou, professor of infectious disease epidemiology, University of Minnesota School of Public Health and College of Veterinary Medicine, was recognized for outstanding contributions to epidemiology and public health. (MPVM 1976, PhD comparative pathology 1982, UC Davis)

John Pascoe, executive associate dean, UC Davis School of Veterinary Medicine, was recognized for his vision, energy and passion as architect of the future of the world’s leading veterinary school and academic program. (PhD comparative pathology 1986, UC Davis)

UCVMC—SAN DIEGO

“TAIL WAGGING” EVENT CELEBRATES NEW DIGS

More than 100 clients, pets, community members and university officials gathered April 29 to open new clinical facilities for the UC Veterinary Medical Center, San Diego (UCVMC-SD), established by the school and UC San Diego in 1998 to foster collaboration in teaching and research activities and promote emerging specialty services in Southern California.

The UCVMC-SD occupies 4,000 square feet in the new 26,000-square-foot Veterinary Specialty Hospital of San Diego, including reception and administrative space, exam rooms, a hemodialysis treatment room, conference facilities, a nutrition laboratory and faculty offices.

Current clinical services at the center include renal medicine and kidney dialysis, behavior and a pharmacy service. A clinical nutrition program is scheduled to open there later this year.

The “Grand Opening and Tail Wagging Reception” was hosted by School of Veterinary Medicine Dean Bennie Osburn, UCVMC-SD Director Larry Cowgill, and Dr. Phillip Richter, owner of the Veterinary Specialty Hospital of San Diego.

“The new academic and clinical facility allows us to expand our vital training programs and extend specialty services to the San Diego community,” says Dr. Cowgill. “It also continues our long-standing collaboration with the Veterinary Specialty Hospital of San Diego and continued interaction with the many veterinary practices in San Diego County. We look forward to future interactions with all of them and the opportunity to complement their services.”

COMMENCEMENT 2006

SCHOOL GRADUATES 122 NEW VETERINARIANS

During the 55th commencement ceremony June 16, school officials conferred 122 Doctor of Veterinary Medicine degrees and 36 residency certificates. Certificates were awarded to 22 students completing the Master of Preventive Veterinary Medicine (MPVM) degree. Thirty-one graduates wore the medal of the national Phi Zeta Veterinary Honor Society, and Sabrina Barry received the School of Veterinary Medicine Medal for outstanding academic and clinical achievement.

The class of 2006 chose professor Rance LeFebvre of the Department of Pathology, Microbiology and Immunology as faculty speaker; and Brian Evans and Katherine Giles, both in the small animal track, were the class speakers. The dean recognized 11 Donald G. Low-CVMA Practitioner Fellows and nine retiring faculty members—George Cooper, Benjamin Hart, Steve Haskins, Susan Hildebrand, William Lasley, Charles Plopper, Quinton Rogers, Henry Segall and Joseph Zinkl.

NEW MEMBERS WELcomed

23 JOIN THE HERITAGE SOCIETY FOR ANIMALS

The Heritage Society for Animals—donors who have named the School of Veterinary Medicine in their estate plans—held their annual luncheon April 25 and welcomed 23 new members. Professor Jim Jones presented some highlights of his work on exercise physiology and animal athletes, and attendees saw the new Claire Giannini Hoffman equine Athletic Performance Laboratory in action during a demonstration of the facility’s research and diagnostic capabilities.

Contact the school’s development office at (530) 752-7024 for information about estate-planning tools or how to make an estate gift.
Veterinary epidemiologists Tim Carpenter and Mark Thurmond began modeling foot-and-mouth disease (FMD) seven years ago following an outbreak that devastated the swine industry in Taiwan.

After the 2001 FMD epidemic that swept the United Kingdom and the 9/11 terrorist attack increased concern in the United States, the two School of Veterinary Medicine professors formed the Center for Animal Disease Modeling and Surveillance (CADMS) to develop mathematical, simulation and statistical models to understand and predict the biological behavior of FMD and other potentially devastating diseases.

CADMS is a partner in the $18 million National Center for Foreign Animal and Zoonotic Disease Defense, a consortium of four schools, including UC Davis, University of Texas Medical Branch, and University of Southern California, hosted by Texas A&M University and funded by the Department of Homeland Security.

CADMS has two components—the Animal Disease Modeling & Surveillance Laboratory, focused on domestic diseases and directed by Tim Carpenter, and the Foot and Mouth Disease Surveillance & Modeling Laboratory (www.fmd.ucdavis.edu), focused globally and directed by Mark Thurmond. Twenty-five CADMS investigators—including MS, MPVM, PhD students and postdoctoral fellows from UC Davis and universities in Maryland, Texas, British Columbia, Denmark, the United Kingdom and Argentina—are collaborating with the United States Department of Food and Agriculture and the California State Veterinarian.

As part of its homeland security mission, the Carpenter laboratory, with separate funding from the NSF, NIH, Intelligence Community and USDA, is engaged in a number of projects to study FMD, avian influenza, West Nile virus and brucellosis, and to model wildlife-human, livestock-livestock and livestock-wildlife interactions.

The Thurmond laboratory, with separate funding from the Department of Homeland Security and the Armed Forces Medical Intelligence Center, is developing global surveillance systems and using mathematical and statistical models to predict changes in global FMD risk.

The CADMS researchers, analysts and programmers are developing an epidemiologic model for FMD initially focused on a three-county area in the dairy-intensive California Central Valley. The model uses livestock population and demographic parameters (such as animal movement between different herds) to predict the spread of disease. Detailed agricultural census data, including disease treatment and control activities from thousands of farms, make the model as realistic as possible.

“We break the disease cycle (incubation period, infection period, etc.) into measureable segments. We want to know about the vegetative, meteorological, cultural, socioeconomic, religious and political factors that can influence emergence of FMD in any given area. We are expanding the model to encompass the United States and are developing models to identify when and where we expect to find FMD in the world,” says Dr. Thurmond.

Another focus of research is evolution of the virus. FMD is caused by a very small RNA virus with a high mutation rate. Generating many mutant strains allows the virus to survive under varied conditions including vaccination. CADMS is modeling evolutionary changes in the nucleotide sequences of the virus and working to understand the environmental, host, and management factors that influence mutation.

The Thurmond lab is working with Homeland Security in developing a global surveillance network for FMD viruses, and is collaborating with the University of Arizona Artificial Intelligence Laboratory to develop the BioPortal-FMD, a web portal system that transfers data (sequences) to and from researchers and features real time mapping and “hot spot analysis,” to identify clusters of disease.

“We expect to become involved in other diseases on a global level depending on future funding of CADMS model prototypes for other diseases including avian influenza, hog cholera and brucellosis, and for BioPortal communications that may link to any surveillance network worldwide,” says Dr. Thurmond.

Predicting Foot-and-Mouth Disease

A model predicting areas of high risk of FMD in Pakistan highlights the Punjab region where cattle enter Pakistan from FMD-endemic India, and areas along the Afghanistan border, more susceptible since the U.S. occupation of Afghanistan increased the demand for livestock.

FMD is a highly contagious, debilitating viral disease of cloven animals that could be an agricultural disaster if it enters the United States.

Estimated Risk of Premises Becoming Infected

A model estimates the results of multiple simulations of an FMD outbreak in California originating in the Central Valley. If the first case is identified at day 21, the data show what to expect 11 days later—200 farms could be infected, with half a million animals having to be slaughtered.

Modeling reveals that during the week or 10 days it would take to become obvious, an infection could spread very rapidly—which points out how important it is to control animal movement.

In the UK, because of widespread movement of animals before anyone realized FMD was there, the 2001 epidemic spread throughout the country—it lasted eight months and required killing the livestock on 10,000 farms.
The SeaDoc Society: From Conversation to Conservation

What do you do when one threatened species eats another? Wildlife veterinarian and research scientist Joe Gaydos posed the question last fall in a presentation to the Puget Sound community.

Washington State has a mandate to bring back a viable population of sea otters, which daily eat 20 percent of their body weight in abalone and sea urchins. Yet the state’s population of Northern abalone is in danger of extinction, and sustaining a viable commercial sea urchin harvest is of economic importance. The SeaDoc Society, a marine ecosystem health program administered by the school’s Wildlife Health Center and directed by Dr. Kirsten Gilardi, is funding a study to see if the red sea urchin spine canopy hides and protects abalone juveniles.

Dr. Gaydos, the SeaDoc Society’s regional director, is carrying out the research and equally important, is bringing stakeholders in the Puget Sound region together so that when faced with complex ecosystem problems, everyone can think of the end game.

“We’re in the business of overcoming the cynicism and doing something about it,” he says. The SeaDoc Society catalyzes conversations in which everyone is a part—tribal representatives, state biologists, federal fisheries agents, and Washington State endangered species leaders—and creates synergy by making connections with other agencies, advisory boards, public and private donors, and citizen scientists with the passion and the equipment to carry out important research.

“The public-private partnership model is very successful in bringing basic science into policymaking, management, and conservation, and is applicable to many areas in need of scientific study,” he says. “Information is great, but only if it gets into the hands of people who can put it to use.” The challenge, he says, is keeping up with demand for research and communication.

“People want living natural resources—to fish and harvest crabs, to see whales. If I am willing to limit the crab harvest to five versus six, or only allow Wednesday–Saturday harvesting versus all week, I can keep the crab population sustainable for my kids—it’s a balance,” he says. “There’s no reason we can’t have healthy ecosystems and marine populations. We just need to make it a priority.”

ENVIRONMENTAL HEALTH

REMOVING CALIFORNIA’S DERELICT FISHING GEAR

“It Takes Decades to Disintegrate, but Only Seconds to Report” announces a colorful poster going to dive shops, marinas and other boat-friendly venues encouraging the public to report sightings of abandoned gear as part of a pilot clean-up program.

Lost or abandoned fishing nets, lines, pots, traps, and other commercial and recreational fishing items that rest on the sea floor, float or get caught on rocky reefs pose extreme hazards to marine wildlife, people and boats.

The SeaDoc Society is managing agency for the California Derelict Fishing Gear Removal Project launched in 2005 in partnership with the California State Coastal Conservancy, the Northwest Straits Commission, and the National Fish and Wildlife Foundation to remove gear from key locations along the California coast. Certified SCUBA divers are trained to extract gear from near-shore waters in a safe and environmentally sensitive manner.

Private support helps sustain the SeaDoc Society mission. For more information visit www.seadocsociety.org.

Veterinary Medicine News, UC Davis, Summer 2006

STUDENT SUPPORT

PATHOLOGY GRADUATE SCHOLARSHIP HONORS DONALD DUNGWORTH

The Donald L. Dungworth Graduate Student Memorial Fund serves as tribute to both the man and his philosophy of lifelong learning.

Educator and researcher Donald Dungworth served on the School of Veterinary Medicine faculty for 31 years. Following his death in February 2005, his wife, Terri, daughter, Dawn Elsbree, and son, Duncan, established the memorial fund as a way for friends and colleagues to honor his memory. The endowment, created with more than $45,000 in gifts from family and friends from around the world, will support outstanding pathology graduate students as they travel to scientific meetings and publish their research.

The first awardee will be selected in October by vote of the pathology faculty. In addition to encouraging graduate students to present their work at national meetings, the award will promote academic careers in pathology and graduate education to advance pathology research.

During his UC Davis tenure, Dr. Dungworth gained an international reputation as an expert in the field of inhalation toxicology and pathology. His collaborative research provided key information for standards established in the Clean Air Act of 1990.

To make a gift to the Donald L. Dungworth Graduate Student Memorial Fund, contact the school’s development office at (530) 752-7024.

As part of the SeaDoc Society’s California Derelict Fishing Gear Removal Program, deck hand Kenny Hill winches aboard a derelict lobster trap floated to the surface off Santa Catalina Island by SCUBA divers. During a 10-day period last May, 222 items were removed from the sea floor.
Continuing Professional Education

2006 Programs for Veterinarians

<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practical Ultrasonography: Cardiology</td>
<td>Sep 16</td>
<td>UC Davis</td>
</tr>
<tr>
<td>19th Annual Fall Symposium on Recent Advances in Clinical Veterinary Medicine—including Feline Ultrasonography Course</td>
<td>Sep 17</td>
<td>UC Davis</td>
</tr>
<tr>
<td>Equine Reproductive Techniques: A Short Course for Veterinarians</td>
<td>Sep 17–18</td>
<td>UC Davis</td>
</tr>
<tr>
<td>Public Policy & Animal Health Short Course: Politics, Facts, Beliefs</td>
<td>Sep 28–30</td>
<td>UC Davis</td>
</tr>
<tr>
<td>Practical Ultrasonography: Beginning/Review</td>
<td>Oct 7–8</td>
<td>UC Irvine</td>
</tr>
<tr>
<td>Practical Ultrasonography: Intermediate</td>
<td>Oct 21–22</td>
<td>UC Irvine</td>
</tr>
<tr>
<td>22nd Annual George H. Muller Veterinary Dermatology Seminar in Hawaii</td>
<td>Nov 1–8</td>
<td>Kauai, HI</td>
</tr>
<tr>
<td>8th Annual Veterinary Endocrinology & Internal Medicine Seminar</td>
<td>Nov 28–Dec 5</td>
<td>Barbados, West Indies</td>
</tr>
</tbody>
</table>

Fall Symposium Programs for RVTS, Veterinary Technicians and Veterinary Assistants

<table>
<thead>
<tr>
<th>Program</th>
<th>Date</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>RVT/Vet Technician/Assistant Program 1—Radiology</td>
<td>Sep 17</td>
<td>UC Davis</td>
</tr>
<tr>
<td>RVT/Vet Technician/Assistant Program 2—Topics include behavior, managing stress and surgery prep</td>
<td>Sep 17</td>
<td>UC Davis</td>
</tr>
</tbody>
</table>

Visit www.vetmed.ucdavis.edu/ce for program details or to register.

Celebrate Alumni Day

September 16, 2006

School of Veterinary Medicine classes of 1956, 1966, 1976, 1981, 1986 and 1996 will return to UC Davis September 16 to celebrate Alumni Day. The class of 1956 will be honored guests as they celebrate 50 years.

Don’t miss the festivities!

Alumni Day includes class reunions, school tours (including new facilities), lunch and a barbecue dinner. For more information, call (530) 752-3819.

...and the Fall Symposium

The Fall Symposium is Sunday, September 17, 2006. Information is online (www.vetmed.ucdavis.edu/ce/fallsym.html).

Veterinary Medicine News is published by the University of California, Davis, School of Veterinary Medicine; Bennie I. Osburn, DVM, PhD, Dean; Donald J. Klingborg, DVM, Associate Dean for Public Programs; Susan Donahue, Editor; Lynn Narlesky, Writer; UC Davis News Service, Contributors; Marianne Post, Design Consultant. The University of California does not discriminate in any of its policies, procedures or practices. The university is an affirmative action/equal opportunity employer.