Validation of automated MRI segmentation protocols of neuroanatomical regions of the rhesus macaque brain

Brittany Davis1, Joey Charbonneau2,3, Erika Raven3,4, Jeffery Bennet3,5,6, Eliza Bliss-Moreau3,6
1School of Veterinary Medicine, University of California Davis, Davis, CA, USA 2Neuroscience Graduate Program, University of California Davis, Davis, CA, USA 3California National Primate Research Center, University of California Davis, Davis, CA, USA 4New York University School of Medicine, Department of Radiology, New York, NY, USA 5Department of Psychiatry and Behavioral Sciences, University of California Davis, Davis, CA, USA 6Department of Psychology, University of California Davis, Davis, CA, USA

Introduction

MRI is a valuable neuroimaging tool that allows researchers to obtain anatomical data in live subjects. Historically, hand segmentation methods have been used to delineate regions on scans by manually drawing structures on scans. This method is time and labor-intensive. Automated segmentation methods utilize specialized software to apply an atlas to a novel subject brain. This approach is efficient and becoming increasingly popular. While the accuracy and reproducibility of these methods has been questioned in human neuroimaging1-2, there is scarce evidence validating the performance of the atlases for use in animal models. We chose to compare the performance of these methods on two structures in the rhesus monkey, a widely used animal model of human neurologic disease: the amygdala (subcortical) and the insula (cortical).

Methods

Subjects:
36 rhesus macaques (22 males, 14 females; 1.1-20.3 years old)

Hand segmentation was carried out in ITK-Snap3.

Automated segmentation methods used two atlases: SARM4, which is specific to subcortical structures, and CHARM5, which is specific to cortical structures. We added together regions of interest from the atlases that most closely approximated the hand-drawn structures.

Discussion

Automated segmentation methods do not produce accurate volumetric data for subcortical structures. Atlas registration to subject brains appears to be a problem in automated methods.

Using automated methods may lead to drawing incorrect conclusions about the volumes of anatomical structures and their relationships to one another.

Future work: compare the performance of hand and automated methods in additional structures.

Acknowledgements

Financial support was provided by the STAR Program through a UC Davis School of Veterinary Medicine Endowment Fund.

References