A specific equine cartilage MRI protocol is necessary

Osteoarthritis of the distal interphalangeal joint (DIPJ) is a common problem affecting horses' soundness and well being, but techniques to diagnose early cartilage injury are limited. Magnetic resonance imaging (MRI) is used to diagnose cartilage injury in people and is promising for horses. Differences of cartilage properties between people and horses suggest the need for equine-specific protocols to improve diagnosis of cartilage injuries in horses. We will test MRI hardware (RF coil) and software (pulse sequence) combinations for optimal equine cartilage visualization.

Phantoms were constructed to test MRI protocols

- Constructed six synthetic gel phantoms with equine DIPJ MRI properties
- Tested twelve MRI protocols with following software/hardware combinations:
  - MRI hardware: Radiofrequency (RF) Coil
    - Knee coil
    - 3” Surface coil
    - 5” Surface coil
  - MRI software: Pulse Sequence
    - FastSpin Echo
      - FSE TR4400 TE15
    - Gradient Echo
      - FSPGR TR190 TE12 FA20
      - FSPGR TR620 TE3 FA90
    - Surface coil and pulse sequence FSPGR TR620 TE3 FA90 have the highest IQ.

Figure 1. Radiofrequency coils and their effects on MR images. The upper row are images taken with the same pulse sequence, slice location, and phantom. 3” Surface coil (center image) has the least uniform signal across the image with varying image quality between regions. The lower row images are magnified and adjusted to depict background noise. The 3” Surface coil has the least noise, while Knee coil generates the most noise.

Figure 2. SNR as a function of coil and slice location. Slicelocation is the distance between each image and the center of the study object. 3” Surface coil has the best SNR in the central 60 mm of the phantom, and the 5” Surface coil has better SNR at the margins of the phantom.

Figure 3. Image nonuniformity as a function of coil and pulse sequence. 3” Surface coil has the highest image nonuniformity, which significantly deteriorates image quality. There is no significant effect of pulse sequence on nonuniformity.

Figure 4. Image Quality Index (IQ) for coils and pulse sequences. The 5” Surface coil and pulse sequence FSPGR TR620 TE3 FA90 have the highest IQ.

5” Surface coil and TR620 have superior image quality

- Pulse sequence FSPGR echo TR620 TE3 FA90 is superior to others. It gave excellent SNR and good image uniformity.
- 5” Surface coil provided the best overall image with great SNR and excellent image uniformity.
- We recommend the 5” Surface coil and FSPGR TR620 TE3 FA90 pulse sequence as the MRI protocol for the next experiment phase.

Future Research

The results of this study will be carried on to the next phase of the project to test the best protocol for visualization of cartilage in equine cadaver limbs as judged by board-certified veterinary radiologists.

References


Acknowledgements

Funding provided by the NIH T-35 training grant and Student Training In Advanced Research (STAR). Specially thank you for Emma Juchau - the junior STAR student. Dustin Leah, and Alice Wong - the generous support from VORL lab members, and Chisntao Toupakatai Sikuotakai - the poster editing. Dr. Pessaah – Division of Research and Graduate Education, Sue Kanaho, Christine Munsterman – SVM, Office of Dean.