Background

Species: The Red Fox (Vulpes vulpes) is the most widely distributed land carnivore in the world. Several native and non-native subspecies are present in North America. Native subspecies are cold adapted and occur in low densities in boreal and high elevation mountain habitats, while non-native red foxes are generalists, living in a large variety of habitats, particularly urban environments.1–3

Diet: Small mammals, birds, and anthropogenic food and items.4

Dental Pathology: Dental lesions and pathology may have impacts on the survivability of wild animals5 while providing information about environmental pressures, genetics, disease history, and diet.6 Links between oral and systemic health also suggest that dental pathology is important to consider when assessing overall health. Anthropogenic diets have been associated with poor oral health in species such as raccoons,7 which may result in more severe dental pathology in the red fox.

Purpose: This study is a part of an ongoing investigation into the dental pathology of North American carnivores. The dental and temporomandibular joint (TMJ) pathology of the gray fox, island fox, Arctic fox, and kit fox have been previously studied, and will serve as a comparison to determine how dental and TMJ pathology differs in prevalence and presentation between fox species.

Results

Pathology Prevalence

Tooth Presence (Figure 2)

- 12355 teeth present out of 12810 expected (96.45%)
- Congenital Absence: 0.56% of teeth
 - Mandibular third molar teeth most frequent
- Acquired Loss: 0.76% of teeth
 - Incisor teeth most frequent

Anatomical and Developmental Conditions:

Tooth Form (Figure 3a)

- 12 teeth demonstrated abnormal form

Supernumerary Roots (Figure 3b)

- 0.4% of teeth exhibited an extra root
 - Supernumerary roots were present more frequently in premolar teeth

Fenestrations (Figure 4a)

- 42 specimens exhibited fenestrations (33.77%)
 - Most frequently occurred at the maxillary first molar tooth

Persisting Deciduous Teeth

- 10 persistent deciduous teeth; only persistent deciduous maxillary canine teeth were present

Enamel Hypoplasia

- 51 (40.40%) of teeth affected by enamel hypoplasia
 - 21 specimens displayed enamel hypoplasia (8.89%)
 - Canine teeth most frequently affected

Acquired Conditions:

Periodontitis (Figure 4)

- 3.9% of teeth affected, 56.72% of specimens showed periodontal changes. Premolar teeth most frequently affected
 - Stage 2: 2.87% of teeth, 48.2% of specimens
 - Stage 3: 5.91% of teeth, 20% of specimens
 - Stage 4: 0.12% of teeth, 0.93% of specimens
 - 43.28% specimens showed no periodontal changes

Attrition and Abrasion (Figure 5)

- 45.06% of all teeth
 - Stage 1: 25.26% of teeth affected; 94.10% of specimens
 - Stage 2: 11.97% of teeth affected; present in 68.52% of specimens
 - Stage 3: 5.56% of teeth affected; present in 37.76% of specimens
 - Stage 4: 2.27% of teeth affected; present in 15.74% of specimens. Most frequent on the canine and premolar teeth.

Dental Fractures

- 2.97% of all teeth fractured, 50.83% of specimens had at least 1 fractured tooth
- Canine teeth were the most frequently fractured (8.36% of all canines)
 - Enamel Fracture: 0.25% of teeth
 - Uncomplicated Crown Fracture: 0.13%
 - Complicated Crown Fracture: 0.81%
 - Uncomplicated Root Fracture: 0.04%
 - Complicated Crown Root Fracture: 0.73%
 - Root Fracture: 1%

Periapical Lesions

- 9 specimens had periapical lesions

TMJ Pathology (Figure 6)

- 48 mild and 6 moderate osteoarthritic lesions
- 20 individuals had bilateral lesions, 14 had unilateral lesions

Other

- 1 malocclusion
- 16 instances of gunshot wounds
- 6 specimens showed forms of bony proliferation/pathology

Hypothesis

Dental and temporomandibular joint (TMJ) pathology will have a similar presentation to that of the grey fox, island fox, Arctic fox, and kit fox but will be more prevalent and severe due to urban habitat and consumption of anthropogenic foods.

Methods

- Macroscopic examination was performed on 305 out of the 390 specimens from the Museum of Vertebrate Zoology in Berkeley, California
- Specimen sex, collection location and date, and subspecies were recorded if provided
- Age was estimated based on cranial, prephenoid-ormer and basihypophoeno-preshphenoid sutures
- Juvenile, mixed dentition, and specimens from outside North America were not included in the study
- Consistent scoring criteria were used to assess each tooth individually for:
 - Tooth Presence: missing teeth were categorized as artificial, acquired loss, or congenital absence.
 - Anatomical and Developmental Conditions: abnormal tooth form, supernumerary teeth, superimposed root formations, persistent deciduous teeth, and enamel hypoplasia
- Acquired Conditions: periodontitis, attrition/abrasion, fractures, periradicular, and TMJ osteoarthritis
- Prevalence of congenital absence, acquired loss, superimposed root formations, enamel hypoplasia, periodontitis, attrition/abrasion, and fractures among tooth types was analyzed using a Chi-square test

Discussion

- Most common congenital lesions: Congenital tooth absence (0.56% of teeth) followed closely by fenestrations (0.51% of teeth). Molar teeth were more frequently affected by both lesions.
 - Congenital lesions may be more prevalent within certain subspecies – Vulpes vulpes kermesius had more frequently congenitally absent molar teeth than other subspecies.
 - Acquired Lesions were more prevalent than congenital abnormalities
 - Attrition/abrasion were present in almost all specimens
 - Periodontitis was present in over half of all specimens (56.72%)
 - However, percentage of individual teeth showing signs of periodontitis (3.9%) was lower than in other fox species.8
 - TMJ osteoarthritic lesions were present in 11.15% of specimens
 - Most lesions were mild, with no severe lesions present in the study population.
 - Next steps:
 - Prevalence of abnormalities compared between sex, age, subspecies, location, and collection date will be analyzed
 - Prevalence of pathology will be compared between native and suspected non-native specimens.
 - Comparisons with other North American fox species

Acknowledgements

Financial support was provided by the Students Training in Advanced Research (STAR) Program through an SVM endowment.

The authors would like to thank Dr. Chris Conny and the Museum of Vertebrate Zoology at UC Berkeley for use of their facilities and specimen collection. Special thanks to Dr. Chiruulzav Tsovaldski Skuraitis for editing the specimen photographs.

References