Insulin secretion in response to oral glucose intake is described as the incretin effect and is driven by two gut-derived hormones: glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1). GLP-1 is derived from the protein precursor proglucagon, which can be cleaved into either glucagon or GLP-1 via the PC2 or PC1/3 enzyme, respectively. Traditionally, it was believed that alpha cells express PC2 and not PC1/3, but multiple studies have demonstrated alpha cells can be stimulated to express PC1/3 and consequently produce GLP-1. Because the half-life of active GLP-1 in circulation is extremely short, it is hypothesized that alpha cells contribute to glucose-stimulated insulin secretion (GSIS) via paracrine signaling to beta cells using GLP-1. Indeed, a recent study demonstrated that GIP contributes to GSIS through the alpha cell. We hypothesize alpha cell GIP receptor signaling promotes GSIS by activating the production of GLP-1. The goal of our project is to determine if GLP-1 is released in response to alpha cell GIP receptor signaling, which would give more insight into potential mechanism behind alpha and beta cell communication in GSIS. To achieve this, we are treating alpha TC1-6 cells with GIP under conditions of high and low glucose. The production of GLP-1. The goal of our project is to determine if GLP-1 is released in response to alpha cell GIP receptor signaling, which would give more insight into potential mechanism behind alpha and beta cell communication in GSIS. To achieve this, we are treating alpha TC1-6 cells with GIP under conditions of high and low glucose. The production of GLP-1. The goal of our project is to determine if GLP-1 is released in response to alpha cell GIP receptor signaling, which would give more insight into potential mechanism behind alpha and beta cell communication in GSIS. To achieve this, we are treating alpha TC1-6 cells with GIP under conditions of high and low glucose.

Hypothesis

Determination of the Impact of GIP Receptor Signaling on α-Cell GLP-1 Production

Abstract

Insulin secretion in response to oral glucose intake is described as the incretin effect and is driven by two gut-derived hormones: glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1). GLP-1 is derived from the protein precursor proglucagon, which can be cleaved into either glucagon or GLP-1 via the PC2 or PC1/3 enzyme, respectively. Traditionally, it was believed that alpha cells express PC2 and not PC1/3, but multiple studies have demonstrated alpha cells can be stimulated to express PC1/3 and consequently produce GLP-1. Because the half-life of active GLP-1 in circulation is extremely short, it is hypothesized that alpha cells contribute to glucose-stimulated insulin secretion (GSIS) via paracrine signaling to beta cells using GLP-1. Indeed, a recent study demonstrated that GIP contributes to GSIS through the alpha cell. We hypothesize alpha cell GIP receptor signaling promotes GSIS by activating the production of GLP-1. The goal of our project is to determine if GLP-1 is released in response to alpha cell GIP receptor signaling, which would give more insight into potential mechanism behind alpha and beta cell communication in GSIS. To achieve this, we are treating alpha TC1-6 cells with GIP under conditions of high and low glucose.

Methods

Study Design:

- aTC1-6 cells (mouse-derived)
- ELISA (for active GLP-1 & glucagon)
- Western blotting (for PC1/3 & PC2)
- qPCR (for Pcsk1 & Pcsk2)

Analysis:

- Collect & sonicate
- Collect
- 24-hr GIP treatment
- Active GLP-1
- Active GIP-1
- Active GIP-1

Results

- [Active GLP-1] (pg/mL)

 - No GIP + 11.1mM glucose
 - No GIP + 5.5mM glucose
 - No GIP + 11.1mM glucose
 - 100nM GIP + 11.1mM glucose
 - 100nM GIP + 5.5mM glucose
 - 100nM GIP + 11.1mM glucose

Discussion

- Secretion of active GLP-1 by α-cells does not change in response to GIP treatment under these experimental conditions.
- Expression levels of active GLP-1 also do not appear to be affected by GIP treatment under these experimental conditions.
- This experiment will be repeated to increase the sample size to determine any potential significance of our results.

Conclusion

- The α-cell GIP-R plays a role in β-cell communication, but further investigation is required to identify the intermediate by which this occurs.

Future Directions

- Replicate experimental paradigm in human and mouse islets for increased translational and physiological relevance.
- Explore the role of glucogenic amino acids in glucose-stimulated insulin secretion with GIP administration.

Acknowledgements

I would like to gratefully acknowledge my funding this summer from the NIH Grant T32GM136559 and UC Davis SVM Endowment Funds. This research project was made possible by funding from the Hartwell Foundation, NIH/NIDDK R56DK124853 grant. Figures made using BioRender.com

References