

Effects of Panobinostat, a Histone Deacetylase Inhibitor, on NETs Formation in Canine Neutrophils

<u>Stephanie S. Han</u>, Jennifer L. Willcox, Nghi Nguyen, Wan Khoon Avalene Tan, Ronald H. L. Li

Department of Veterinary Surgical and Radiological Science, School of Veterinary Medicine, University of California, Davis, California, USA

Introduction

Neutrophils play an important role in innate immunity by formation of neutrophil extracellular traps (NETosis).

Fig. 1 Neutrophil extracellular traps formation in response to potential activators leading to histone citrullination via peptidyl arginine deiminase 4 (PAD4)

Overzealous inflammation and NET formation can also occur with cancer¹⁻³

In people, NETs have been shown to contribute to tumor <u>progression</u> and <u>metastasis</u>⁴⁻⁷

Materials and Methods

Eligibility Criteria:

- Dogs deemed healthy, > 1 year of age, > 10kg, no vaccination within 30 days of enrollment, no comorbidities or medications
- Normal complete blood count within reference intervals

Fig. 3 Schematic illustration of the experimental procedures and assays. Isolated canine neutrophils from whole blood were pre-treated with increasing concentrations of panobionstat or its vehicle control (0.2% DMSO) before activation with 100 nM PMA or 16 uM A23187. NETs were evaluated by live cell imaging using immunofluorescence microscopy and intracellular histones were assessed by immunodetection and flow cytometry.

SCAN ME

Rationale/Hypothesis/Objectives

Rationale:

- Cancer is the leading cause of death in older dogs and new therapeutic options are needed²
- Given the potential role NETs may play in cancer progression, treatment strategies targeting their formation should be pursued
- This study is the first step to determine if HDACis may reduce in vitro NETosis in dogs and provides the basis for future in vivo studies

Hypothesis:

The HDACi, panobinostat, will dose-dependently modulate NET formation in canine neutrophils induced by phorbal myristate acetate (PMA) or A23187, by inhibiting histone citrullination.

Objectives:

- 1. Evaluate if increasing concentrations of panobinostat would modulate in vitro NETs formation by PMA or A23187
- 2. Evaluate if panobinostat inhibits PMA or A23187-induced NETosis by inhibiting histone citrullination
- PAD 4
 Histone Citrullination

 Neutrophil

 pathogen

 Histone Acetylation

 Histone Acetylation

Fig. 2. Proposed mechanisms of NETosis inhibition by panobinostat (HDACi)

Apoptosis

Results

Conclusion/Future Directions

Conclusions:

- Panobinostat modulated NETosis in canine neutrophils in a dose-dependent manner
- Unlike human neutrophils, panobinostat did not further stimulate NETosis
- Inhibition of NETosis by panobinostat may be secondary to a reduction in histone citrullination

Future Directions:

- Assessment of apoptosis in panobinostat-treated canine neutrophils
- Western blot analysis to evaluate histone citrullination and acetylation
- Future pharmacodynamic studies to assess if panobinostat decreases NETosis in dogs with cancer

Acknowledgments

Boehringer Ingelheim Veterinary Scholars Program

shown to have modulated expression of citH3 compared to PMA-activated neutrophils (red dots).

UC Davis Center of Companion Animal Health Grant (2022-21-F)

