Spatial transcriptomic analysis of canine metastatic melanoma: Defining RNA signatures of primary tumors and the brain microenvironment

> <u>Kulani T. Simafranca-Narte</u>, Ryan G. Toedebusch, Christine M. Toedebusch STAR 2023 Oral Presentation

Features of Canine Malignant Melanoma

- Malignant melanoma (MM) accounts for 7% of all canine cancers
- Oral cavity is the most common primary tumor site – also the most deadly

• 38% of MM will have central nervous system (CNS) metastasis

Presence of clinical brain disease accelerates euthanasia

Microglia have been implicated as being permissive to brain metastasis

Hypothesis: The brain microenvironment and primary tumor transcriptomic signatures will be <u>distinct between groups</u>, correlating with the presence or absence of brain metastasis in canine metastatic melanoma.

- Aim #1: Identify the transcriptomic differences of <u>cells within the brain</u> <u>microenvironment</u> in the following canine groups: Malignant melanoma brain 1) with and 2) without brain metastasis, and 3) Normal brain.
- Aim #2: Identify transcriptomic differences of the <u>primary tumor</u> <u>microenvironment</u> in canine malignant melanoma between dogs with and without brain metastasis.

Study Design: Case Selection

Inclusion criteria:

- Histopathological diagnosis from a board-certified pathologist of oral melanoma that has metastasized to at least one organ
- Brain histopathological evaluation
- Tissue availability of brain and primary oral melanoma tumor

Exclusion criteria:

- Coexisting metastatic cancer
- Additional brain disease

Study Design: Spatial Transcriptomics

Atlas Panel (1,963 genes)

Melanocytes = PNL2

Image adapted from Nanostring Website

Data: Quality Control, Filter, Normalization

Segment QC

- Raw reads < 1000
 - Sequencing failed (ex. pipetting error during library prep)
- Percent aligned reads < 80%
 - Contaminated or low quality
- Sequencing saturation < 50%
 - Depth of sequencing not sufficient to capture low expressing unique targets
- *Negative probe count < 10
 - Background noise could not be estimated
- No template control count > 1000
 - Contamination during PCR
- Minimum nuclei count < 50
- *Minimum surface area < 16,000 um^2

Q3 Normalization

• Normalized to top 25% expressors to reduce variance of gene expression

Biological Probe QC

- Probes in all segments/Probes within target < 0.1
 - Excludes probes performing poorly relative to other probes for same target
- Fails Grubbs outlier test in > 20% of segments
 - Excludes probes that are consistent outliers
- Calculate limit of quantitation (LOQ) = 2 SD above mean of negative probes
 - Determines confidence threshold of probe expression
- Results: 2010 total probes = 1997 passed, 13 local outliers

Filter

- By ROI exclude if expression < LOQ or frequency < 5%
 - Results: 93/100 ROIs passed = 93% of ROIs expressed at least 5% of panel genes
 - Removed all PNL2 ROIs in one case
- By target gene exclude if expression < LOQ or frequency < 5%
 - Results: 1118/1963 genes passed = 57% of target genes from panel were detected in at least 5% of ROIs

CNSmet samples segregate from NormalBrain and NonCNSmet

Microglia in dogs with brain metastasis express protumorigenic genes

22 unique differentially expressed genes (DEGs) identified in microglia across groups

Are there region-specific gene signatures of microglia within the brain tumor?

Microglia in the core and border of the brain metastasis segregate from peri-tumoral microglia

Border and core microglia may have distinct functions

Errede et al., Fluids and Barriers of the CNS, 2022 ; Johnson et al., Journal of Cancer Immunology, 2020

Summary and Conclusion

• Gene expression is distinct between patient groups

- Microglia function in CNSmets have pro-tumorigenic signature
 - Role of microglia in NonCNSmets is unclear
- Microglia signature in brain metastases are distinct between location
 - Microglia along the border play a role in recruitment

Acknowledgements

NIH NATIONAL CANCER INSTITUTE

<u>Support</u>

NIH #T35-OD010956 NCI/NIH UC Davis Paul Calabresi K12 #2K12CA138464-11 UC Davis SVM Center for Companion Animal Health #2022-38-F

Toedebusch Laboratory

Christine Toedebusch, DVM, PhD, DACVIM (Neurology) Ryan Toedebusch, PhD Ning-Wei Wei, DVM T32 Comparative Oncology Fellow Fernanda Catacci, DVM Post-doc Fellow Dani Jimenez, Graduate Student Jennie Furth-Jacobus, VMIV Megan Gragg, VMIV Tatiana Pechnikova, CURE Scholar

Collaborators

Michael Kent, MAS, DVM, DACVIM, DAVCR-RO, ECVDI-RO Aryana Razmara, DVM Luke Wittenburg, DVM, PhD, DACVCP Blaire Consales, DVM Stephenie Liu Ryan Davis Clifford Tepper, PhD John McPherson, PhD Ingrid Brust-Mascher, PhD Kevin Woolard, DVM, PhD, DACVCP