

Sudden death and cardiomyopathy associated with LMNA in the Nova Scotia Duck Tolling Retriever

¹Department of Population Health and Reproduction, ²Department of Surgical and Radiological Sciences School of Veterinary Medicine, University of California Davis

Introduction

Dilated cardiomyopathy (DCM) is the most common cardiomyopathy in humans and is characterized by dilation of the left ventricle and decreased systolic function of the heart. Individuals with DCM develop heart failure, arrythmias and are at risk for premature and sudden death. DCM has a prevalence of one in 400 individuals, with 20-48% of those cases being familial DCM (FDCM)¹. Human FDCM often has a dominant mode of inheritance, but a recessive mode of inheritance has been documented as well². FDCM has also been reported in certain dog breeds and has been associated with genes that encode structural proteins of the cardiac myocyte³. FDCM has not been reported in the Nova Scotia Duck Tolling Retriever (NSDTR).

Echocardiograms of Toller Family

	WT (kg)	LVIDd	LVIDs	LVIDDn (normal <1.7)	Fractional Shortening (normal >25%)	LA:Ao (normal <1.6)
Affected	11.3kg	3.9cm	3.4cm	1.9	13.5%	2.5
Affected	15.4kg	4.5cm	3.6cm	2.0	20%	2.4
Sibling	17.6kg	3.6cm	1.7cm	1.6	53%	1.3
Parent	19.5kg	2.8cm	1.9cm	1.2	35%	1.0
Parent	16.3kg	3.3cm	1.6cm	1.4	54%	1.1

LVIDd: Left ventricle internal diameter diastolic **LVIDDn**: left ventricle size normalized for weight

LVIDs: Left ventricle internal diameter systolic **LA:Ao**: Left atrial to aortic root ratio

Approach

Genome Wide Association Study and **Runs of Homozygosity**

- 2 cases and 35 related controls
- Criteria of allele frequency equal to one

Whole Genome Sequencing

- 129 dogs
- Aligned to reference genome Mishka
- Recessive pedigree model used in WebGQT

Genotyping

- Performed with Sanger sequencing on dogs from the pedigree as indicated
- 300 additional unrelated Tollers genotyped

Functional Prediction

Acknowledgments A HEALT Special thanks to the Bannasch Laboratory and all the owners who submitted samples. Financial support was provided by the Students Training in Advanced Research (STAR) Program through NIH T35 OD010956 Grant. VETERINARY MEDICINE Grant 2021-88F Center for Companion Animal Health

- used to reduce the incidence of DCM in NSDTR.

Danielle T. Oertle¹, Kevin L. Batcher¹, Joshua A. Stern², Indiana E. Madden¹, Julia Vo¹, Ronald H.L. Li³, and Danika L. Bannasch¹

L. Burkett, E. L., & Hershberger, R. E. (2005). Clinical and genetic issues in familial dilated cardiomyopathy. Journal of the American College of Cardiology, 45(7), 969–981. 2. Hershberger, R. E., Hedges, D. J., & Morales, A. (2013). Dilated cardiomyopathy: the complexity of a diverse genetic architecture. Nature reviews. Cardiology, 10(9), 531-547

3. Maurer-Stroh, S., Washietl, S., & Eisenhaber, F. (2003). Protein prenyltransferases. Genome biology, 4(4), 212. 4. Simpson, S., Edwards, J., Ferguson-Mignan, T. F., Cobb, M., Mongan, N. P., & Rutland, C. S. (2015). Genetics of Human and Canine Dilated Cardiomyopathy. International journal of genomics, 2015, 204823.

5. Zhang, F. L., & Casey, P. J. (1996). Protein prenylation: molecular mechanisms and functional

consequences. Annual review of biochemistry, 65, 241– 269.

The frameshift mutation (red star) alters the amino acids in exon 11 and exon 12 of *LMNA*.

-699	534 STGEEVAMRKLVRSVTVVEDDEDEDGDDLLHHHHGSHCSSS 574	
	534 STGEEVAMRKLVRSVTVVEDDEDEDGDDLLHHHHGSHCSSS 574	
	533 STGEEVAMRKLVRSVTVVEDDEDEDGDDLLHHHHGSHCSSS 573	
-699	575 GTPPSTTCARAPCCAGLAGSLQTRLPPAAREPRWADPSPLA 615	
	575 GDPAEYNLRSRTVLCGTCGQPADKASASSSGAQVGGSISSG 615	
	574 GDPAEYNLRSRTVLCGTCGQPADKASASGSGAQVGGPISSG 614	
-699	616 LPPPVSQSPAATAVWGAVGVAASGTAWSPAPTSWAAPAPEP 656	
	616 SSASSVTVTRSYRSVGGSGGGSFGDSLVTRSYLLGSSSPRT 656	
	615 SSASSVTVTRSYRSVGGSGGGSFGDNLVTRSYLLGNSSPRT 655	
- <u>699</u>	657 RAPRTAASCDLGPARPGEGGGCLPPFCLTPTLPTPAQHLMG 697	
	657 Q S P Q N C S I M 665	
	656 Q S P Q N C S I M 664	
-699	698 G A	

