

Efficacy and toxicity of carboplatin in the treatment of macroscopic mesenchymal neoplasia in dogs

Celeste Pritchard, Sami Al-Nadaf, Robert Rebhun, Katherine Skorupski, Jennifer Willcox, Amandine Lejeune

Introduction

- Soft tissue sarcomas (STSs) and hemangiosarcomas (HSAs) are common mesenchymal tumors diagnosed in dogs.
- Both are locally invasive but metastatic behavior varies based on location and grade.

Figure 1. CT scan (Transverse view) of a canine patient diagnosed with an invasive, recurrent soft tissue sarcoma (black arrows). The tumor recurred after two surgeries, definitive radiation therapy and failed doxorubicin chemotherapy. The patient received carboplatin and was included in this study.

When local control with surgery and/or radiation therapy is not an option, doxorubicin-based chemotherapy protocols may be considered as palliative treatment.

Tumor type	Cł	Response rate		
STS	Metronomic	CCNU, chlorambucil, thalidomide, cyclophosphamide	0-36%	
	Dose intense	Doxorubicin, ifosfamide, mitoxantrone		
HSA	Metronomic	Chlorambucil, cyclophosphamide	0-47.4%	
	Dose intense	Doxorubicin, mitoxantrone, multiagent DAV, VAC	(86%)	

Table 1. Summary of agents used as palliative chemotherapy for STS or HSA. Dose-intense chemotherapy or metronomic chemotherapy protocols as a single treatment modality have not proven to be effective in local tumor control with variable response rates and often short control times.

593 cases excluded

- Carboplatin is a chemotherapy effective against canine osteosarcoma, with a favorable toxicity profile compared to doxorubicin. It is not an ABCB-1delta substrate and is not cardiotoxic.
- The use of carboplatin in the treatment of canine non osseous sarcomas has been limited, and data is direly needed to investigate its efficacy against this heterogenous family of tumors.

Aims

- To determine the efficacy of carboplatin in the treatment of macroscopic non osseous sarcoma in dogs.
- To describe the toxicity profile and adverse events (AEs) associated with carboplatin in this patient population using VCOG adverse events consensus.

Material and methods

Retrospective study

Computer search using combination of key words

"canine" "carboplatin" "sarcoma" "Sarcoma-(minus)bone" "Soft tissue sarcoma" sarcoma" "liposarcoma" "spindle cell tumor"

"hemangiosarcoma" "peripheral nerve sheath tumor" "schwannoma" "neurofibrosarcoma"" "perivascular wall tumor" "hemangiopericytoma" "fibrosarcoma" myxosarcoma" "pleomorphic Between 1990 and 2021 622 dogs **Exclusion Criteria Inclusion Criteria** Lack of Tumor assessment At least one dose of carboplatin No Follow up post carboplatin Macroscopic tumor Bone sarcoma Tumor description Microscopic disease Follow up tumor assessment Cardiac masses with appearance of STS or HSA (cytology or histopathology) nonvascular sarcoma or chemodectoma Presumptive cardiac HSA (based on echo on echocardiogram appearance) Any stage Any prior therapy

Data collected: signalment, stage, tumor type, previous treatments and responses, carboplatin administered, duration and type of response, AEs, other therapies given, date & cause of death.

29 cases included

Material and methods

Data assessed:

Tumor response using RECIST criteria when possible

Toxicity using VCOG criteria

Response rate (RR) and Response duration [complete (CR) or partial response (PR)] as time of initiation of carboplatin to time of progression of disease (PD)

Progression free survival as time from initial carboplatin to date of identification of PD or death without evidence of PD, impact of stage and pretreatment with chemotherapy.

Results

Table 2. Demographics for the 29 patients

Patient demogra	phics – 29 dogs		
Sex	16 spayed females		
	11 castrated males		
	2 intact males		
Median Age	9.7 years (range 2.5-		
	13.8)		
Median Body weight	24.7 kg (range 5.6-		
	45)		
MDR mutation present	3		
Tumor type	12 HSA		
	17 STS		
Stage	12 Local only		
	17 Distant		
	metastases		
Previous treatments	18 patients received		
	prior chemotherapy		
	11 chemotherapy		
	naive		
Median # chemo prior	1 (range 0-4)		
to carboplatin			

Table 3. Carboplatin treatments and response characteristics.

Treatments and response							
Median	263.7 m	ng/m ² (range 148.2-					
carboplatin dose	332.8)						
Median doses of	2 (range 1-12)						
carboplatin given							
PR	3/29						
CR	1/29						
Overall RR	13.8%	0% (0/17) for STS					
	(4/29)	33% (4/12) for HSA					
Median duration	103 days (range 39-252)						
of response							

Figure 3 - Kaplan Meyer curves. (a) Progression interval for naïve vs pretreated. (b) Progression interval for naïve vs pretreated patients. (c) Progression interval for patients with local only vs metastatic disease.

100

Days

300

	VCOG Grade	Thrombocytopenia	Neutropenia	Constitutional	GI
Table 4. Adverse	Grade I	6.9 %	5.5%	0 %	13.9%
events(AEs)	Grade II	8.3%	2.7%	1.4%	2.8%
characteristics	Grade III	4.1 %	1.4%	0 %	0 %
graded using	Grade IV	2.7%	1.4%	0 %	1.4 %
VCOG criteria.	Grade V	0%	1.4%	0 %	0 %

(c)

Discussion

- Response rate (RR) was low (13.8%) and of short duration in this heavily pretreated population.
- HSA may be more sensitive to carboplatin (33% RR), but this is based on a low number of patients.
- The toxicity profile seen in our patient population was acceptable.
- Patients with distant metastasis may have better response, but this may be due to the type of sarcoma (HSA) associated with metastatic status.
- Limitations of this study inherent to retrospective nature.

Acknowledgements

Financial support was provided by Students Training in Advanced Research (STAR) Program

National Institutes of Health (NIH T35 OD010956-22 grant)

References

