

Introduction

Equine familial isolated hypoparathyroidism (EFIH) is a fatal condition in Thoroughbred foals. It is characterized by muscle contractions and seizures due to hypocalcemia. Originally, the condition was termed idiopathic hypocalcemia in five Thoroughbred foals in 1997.

- 4 to 35 days old
- Severe hypocalcemia and hyperphosphatemia
- Seizure activity, tetany, muscle rigidity
- Death from severe hypocalcemia or euthanasia

An underlying genetic etiology was suspected as only Thoroughbred foals were affected.

Genetic basis identified in 2019 at UC Davis

- RAPGEF5 nonsense variant (c.2624C>A p.Ser875)

- Highly expressed in parathyroid tissue
- Results in loss of function of parathyroid hormone
- Dysregulation of calcium homeostasis
- Direct mechanism unknown
- Role in early embryonic development

Autosomal recessive mode of inheritance

- Identified in Thoroughbred breed
- Allele frequency previously estimated at 1.8%
- 82 Thoroughbreds
- Small non-random sample population

Economic Impact

- Estimated 20,000 Thoroughbred foals registered annually
- Average yearling price in 2020 was $62,208
- Even a single loss can result in substantial economic impact.

An accurate estimate of allele frequency and date of origin for EFIH will inform genetic counseling.

Hypothesis

The RAPGEF5 c.2624C>A genetic variant has a low allele frequency Thoroughbred population and dates back to the first archived DNA sample of the breed.

Specific Aims

1. Determine the allele frequency of the RAPGEF5 variant in a large random cohort of Thoroughbred horses
 - Across the 7 geographical regions of the US

2. Determine if this is a recent variant in the Thoroughbred population and if this variant is undergoing positive selection by comparing the allele frequency of these two time points

Methods

Random generation of sample population
- Samples randomized and selected from each of the seven geographical regions of the United States (Fig. 1)
 - 4 males
 - 4 females
 - 56 samples per year

Genotyping of samples through Agena mass array platform
- 1988-2000 (n=728)
- 2001-2019 (n=1064)
- DNA from hair or purified serum samples
- 3 positive controls and 1 negative control
- Genotyped based on extension product that is classified based on molecular weight difference of base (C or A)

Genotyped
- Homozygous unaffected (N/N)
- Heterozygous carrier (N/H)
- Homozygous affected (H/H)

Analysis
- Allele and carrier frequencies calculated
- 95% Confidence Intervals calculated
- Statistical analysis by Fischer’s exact test
- Significance at P<0.05

Results

Table 1: Allele and carrier frequencies between 1988-2000 and 2001-2019

<table>
<thead>
<tr>
<th>Year</th>
<th>Allele Frequency</th>
<th>95% CI</th>
<th>Carrier Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>1988-2000</td>
<td>0.83%</td>
<td>0.46% to 1.47%</td>
<td>1.65%</td>
</tr>
<tr>
<td>2001-2019</td>
<td>0.77%</td>
<td>0.92% to 2.90%</td>
<td>1.5%</td>
</tr>
</tbody>
</table>

Discussion

- RAPGEF5 c.2624C>A variant is present at low frequency in the United States Thoroughbred Population (Table 1)
- Allele frequency of 0.77% estimates that annually 308 out of 20,000 foals are carriers
- No significant difference in allele frequencies observed between timepoints examined (P=0.84)
- First sample detected with mutation was born in 1992 (Fig. 2). This is not a recent mutation but exact origin remains unknown.
- No EFIH homozygotes detected as expected for a lethal condition
- While not significant, noted differences in allele frequencies in 1997 and 2014 suggest trends should continue to be monitored over time (Fig. 2)
- While not statistically significant, changes in geographical distribution of carriers between time periods warrants further study (Fig. 3)

Recommendations

- Genetic testing within breed
- Continue to monitor trend of variant frequency over time
- Avoid producing affected foals by not mating carriers

Acknowledgements

Financial support to the student was provided by the UC Davis SVM Students Training in Advanced Research (STAR) Program through NIH T35 Training Grant ST35OD010956-22.

Research was supported by the UC Davis Center for Equine Health and UC Davis Veterinary Genetics Laboratory and conducted in collaboration with The Jockey Club.

References