

Optimizing Flavivirus Detection in Free-ranging Non-Human Primates

Olivia Cords¹, JoAnn Yee², Peter Nham², Pranav Pandit³, Tierra Smiley Evans³ UC Davis School of Veterinary Medicine¹, Primate Assay Laboratory Core, California National Primate Research Center², One Health Institute, University of California, Davis, California, United States of America³

Introduction:

Flavivirus transmission can include a wide variety of species, with sylvatic cycles often complicating prevention and control efforts in humans^{1,2}. This research examines the traits of non-human primates (NHP) with confirmed detection of flaviviruses and uses non-invasively collected oral samples to optimize a serologic assay to help target and improve future surveillance efforts.

Objectives:

- <u>Aim 1:</u> Optimize a non-invasive saliva method to detect exposure to flaviviruses in NHP.
- <u>Aim 2:</u> Curate a comprehensive dataset of NHP species, their host traits, and evidence of detection of flaviviruses.
- <u>Aim 3</u>: Analyze ecological and biological traits associated with detection of flaviviruses in NHP species.

Methods:

Optimizing non-invasive saliva method:

- Saliva samples were collected from macaques in Southeast Asia using a non-invasive rope method³, as well as conventional serum and oral samples.
- Samples were tested for antibodies with 5 different magnetic bead-based Luminex assays.
- Plaque reduction neutralization assays (PRNT) were performed to confirm suspect CHIKV positives.

Ecological Traits Analaysis:

- A dataset was created using the "Ecological Traits of the World's Primates" dataset⁴, the IUCN Red List of Species⁵, and a literature review of flaviviruses detected in NHP.
- A multivariable zero-inflated Poisson model was used to assess relationship between NHP traits and flavivirus richness (sum of flaviviruses in each species).

Results:

Agreement between oral swabs (tested with NHP IgGMA) versus serum (tested with human IgG)

Antigen	Kappa value	Strength o
Zika NS1 (Antigen 1)	-0.01	poor
DENV1 NS1	-Inf	
Zika NS1 (Antigen 2)	0.32	fair
Zika env (b)	0.27	fair
DENV2 NS1	-0.01	poor
DENV3 NS1	-0.01	poor
WNV NS1	-0.01	poor
JEV NS1	0.80	substantial
YFV NS1	-0.02	poor
TBEV NS1	-0.03	poor
CHIKV-E1 (Antigen 1)	0.39	fair
CHIKV-E1 (Antigen 2)	0.85	almost perf
DENV4 NS1	0.66	substantial

• CHIKV antibodies were confirmed with PRNT in 5 non-invasive saliva samples and 9 serum samples.

Zero-inflated Poisson model analyzing ecological traits and flavivirus richness*

Traits

(Intercept)

log(Pubmed hits)

subtropical/tropical heavily deg former forest

Savanna

subtropical/tropical dry lowland log(Mean individuals/group)

*Data analyzed included 526 species (10% of which were positive for flaviviruses), 11 ecological traits, and 40 habitats.

Conclusions and Future Aims:

- Antibodies against CHIKV were detected from non-invasively collected saliva samples and validated with PRNT for the first time.
- Subtropical/tropical heavily degraded former forests, savanna, and subtropical/tropical dry lowland grassland habitats are positively associated with flavivirus richness. Mean individuals per group are negatively associated.
- flaviviruses.

References:

[1] Samir, et al. "The global distribution and burden of dengue." Nature 496.7446 (2013): 504-507. [2] Weaver, S. C. & Barrett, A. D. T. Transmission cycles, host range, evolution and emergence of arboviral disease. Nat. Rev. Microbiol. 2, 789–801 (2004).

communications 9.1 (2018): 1-1

surveillance in nonhuman primates." PLoS neglected tropical diseases 9.6 (2015): e0003813. https://doi.org/10.1038/s41597-019-0059-9

http://ww.iucnredlist.org

Acknowledgements:

	IRR	95% CI	P value
	0.27	(0.10, 0.75)	0.011*
	1.39	(1.20, 1.60)	<0.001***
egraded			
	2.87	(1.67, 4.75)	0.008**
	2.32	(1.21, 4.47)	0.012**
nd grassland	6.22	(1.95, 1.98)	0.002**
	0.54	(0.34, 0.85)	0.008**

• In the future, conduct PRNT assays for other

- [3] Pandit, Pranav S., et al. "Predicting wildlife reservoirs and global vulnerability to zoonotic Flaviviruses." Nature
- [4] Smiley Evans, Tierra, et al. "Optimization of a novel non-invasive oral sampling technique for zoonotic pathogen
- [5] Galán-Acedo, C., Arroyo-Rodríguez, V., Andresen, E. et al. Ecological traits of the world's primates. Sci Data 6, 55 (2019).
- [6] International Union for the Conservation of Nature (IUCN). The IUCN Red List of threatened species. Version 2020. See
- [7] Altman, Douglas G. 1999. *Practical Statistics for Medical Research*. Chapman; Hall/CRC Press. [8] Landis JR, Koch GG. 1977. "The Measurement of Observer Agreement for Categorical Data" 1 (33). Biometrics: 159–74.
- Research Grant: NIH T32 Medical Scientist Training Program Grant 2020-2021 (NIH Grant T32GM136559) Student Support: UC Davis School of Veterinary Medicine, Students Training in Advanced Research Grant