

Adipose-derived mesenchymal stem cells as a potential therapy for equine recurrent uveitis

Laurel Saldinger, Seldy Nelson, Naomi Walker, Maura Mack, Rebecca Bellone, Mary Lassaline, Dori Borjesson Department of Pathology, Microbiology, & Immunology, UC Davis School of Veterinary Medicine Veterinary Institute of Regenerative Cures, UC Davis School of Veterinary Medicine

Introduction

Equine recurrent uveitis (ERU) is an immune-mediated, devastating disease that affects up to 15% of horses. ERU is currently the leading cause of equine blindness.

With their immunomodulatory properties, mesenchymal stem cells (MSCs) may be a promising therapy for ERU. Activated T cells are known to stimulate MSCs, which then secrete factors that decrease T cell activation. MSCs have previously been used to treat autoimmune uveitis, and a clinical trial treating ERU with MSCs has already begun. We hypothesized that 1) horses with ERU would have a different immune cell phenotype than healthy horses and that 2) Equine MSCs would alter the T cell activation phenotype by decreasing IFNy, and Foxp3 while increasing intracellular IL-10.

Objectives

- 1. Determine if there are differences in immune cell phenotype between control and ERU horses in vivo.
- 2. Determine if MSCs alter T cell phenotype *in vitro* (CD25, CD62L, Foxp3, IL-10, and IFN γ).
- 3. Determine how MSCs alter T cell activation *in vitro* (cell-cell contact and/or soluble factors).

Materials and Methods

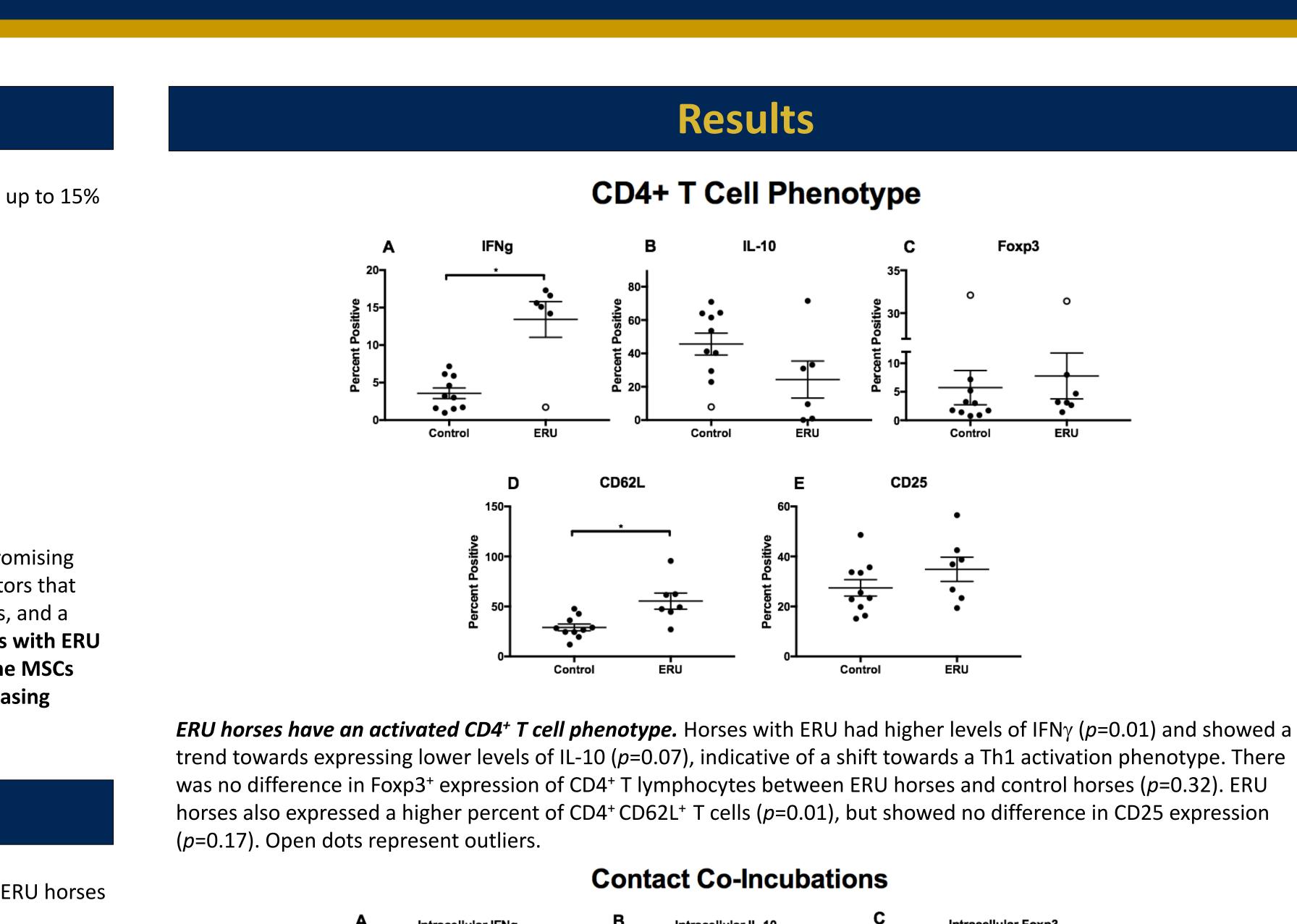
Phenotyping

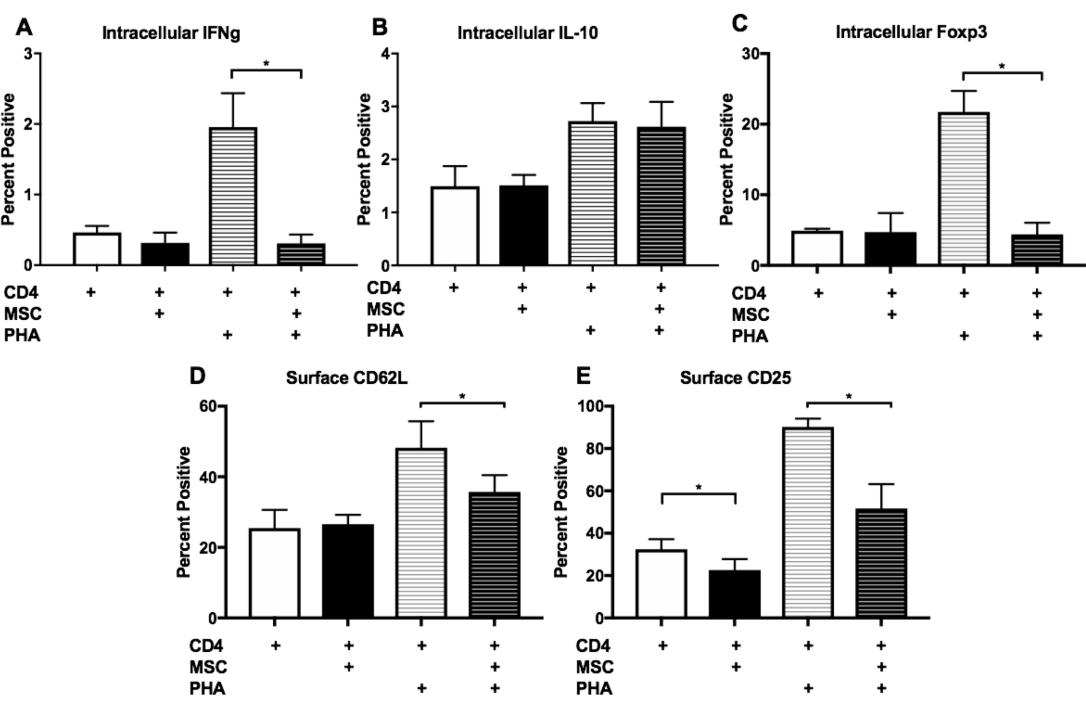
- Whole blood was taken from 10 healthy control horses and 7 ERU horses
- Blood samples were centrifuged on a density gradient to isolate mononuclear cells
- Cells were labelled for CD3, CD4, CD8, CD21, CD25 and CD62L as well as the intracellular cytokines Foxp3, IFNγ, and IL-10 and assessed via flow cytometry

MSCs • MSCs were adipose-derived and were previously collected and expanded by the Borjesson Lab CD4⁺ T cells

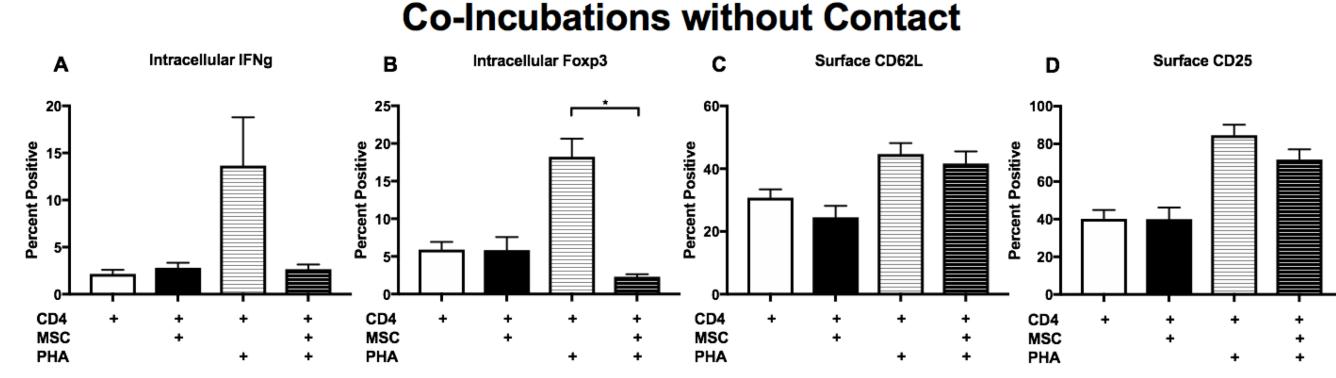
- Whole blood samples were collected from the jugular vein of horses housed at the Center for Equine Health
- Blood samples were centrifuged on a density gradient to isolate mononuclear cells

CD4⁺ T cells were positively selected for using magnetic beads (Miltenyi Biotec) **Co-incubation**


- MSCs were co-incubated at a ratio of 1:5 with CD4⁺ T cells for 4 days
- Four conditions were assessed: CD4⁺ T cells alone, CD4⁺ T cells with MSCs, activated CD4⁺ T cells alone, and activated CD4⁺ T cells with MSCs
- MSC- CD4+ T cell co-incubations were done with or without contact (transwells); for some experiments, prostaglandin (PGE2) was blocked with indomethacin


Flow Cytometry

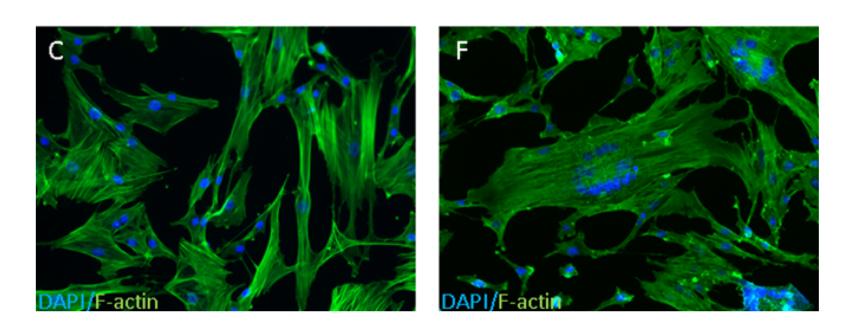
• After co-incubation, surface expression of CD62L and CD62L and intracellular expression of Foxp3, IFN γ , and IL-10 were assessed via flow cytometry


Acknowledgements

Thank you to the STAR Program and the NIH for supporting this research and the Center for Equine Health, UC Davis for funding this project.

Co-incubation with MSCs decreased CD4⁺ T cell activation phenotype. Activated CD4⁺ T cells co-incubated with MSCs showed decreased levels of IFNγ (*p*=0.01), Foxp3 (*p*=0.02), and CD62L (*p*=0.05). MSCs did not change activated CD4⁺ T cell expression of IL-10 (p=0.567). Expression of CD25 by CD4⁺T cells decreased both with and without activation (p=0.02, *p*=0.01) when co-incubated with MSCs.

MSCs use a soluble mediator to decrease CD4⁺ T cell expression of Foxp3 and IFN . Without contact, MSCs still showed a tendency to reduce activated CD4⁺ T cell expression of IFN γ (p=0.08) and showed a reduction in Foxp3 similar to coincubation with contact (p=0.01), indicating a soluble mediator was responsible for these changes. MSCs reduced expression of CD62L in 4 out of 6 lines without contact and reduced expression of CD25 in 5 out of 6 lines without contact. Overall, the reduction of CD62L (p=0.8) and CD25 (p=0.12) in activated CD4⁺ T cells was not significant.


*Bars with a single asterisk represent differences in mean value with p < 0.05

CD4 MSC CD4 MSC PHA

Prostaglandin signaling reduces non-activated CD4⁺ T cells response to MSCs. In the absence of prostaglandin signaling, non-activated CD4⁺ T cells increased their IFN γ (p=0.02) and IL-10 (p=0.01) secretion when co-incubated with MSCs.

Prostaglandin is required for MSC reduction of CD25 and IFN *y* **expression in activated CD4⁺ T cells.** When prostaglandin signaling was blocked, MSCs showed reduction of IFNγ in activated CD4⁺ T cells in 3 out of 5 lines (p=0.41), as opposed to 5 out of 5 lines when prostaglandin signaling was occurring. Co-incubation without prostaglandin also showed increases in IL-10 in activated CD4⁺ T cells in another 3 out of 5 lines (p=0.75), though there was no significant difference overall. MSCs were able to reduce Foxp3 (p=0.01 and p=0.01) and CD62L (p=0.06 and p=0.02) expression in both non-activated and activated CD4⁺ T cells without prostaglandin signaling. However, MSCs were not able to reduce CD25 expression (p=0.15) in the absence of prostaglandin.


- in activated T cells.
- on a soluble mediator to reduce CD62L and CD25.
- prostaglandin.

Results

Prostaglandin Blocked Co-Incubations

Conclusions

• ERU horses show an activated CD4⁺ T cell phenotype, with increased levels of IFNγ and decreased levels of IL-10, and are likely skewed towards a Th1 response.

• MSCs reduce CD4⁺ T cell activation by reducing levels of IFNγ, Foxp3, CD25, and CD62L

• MSCs rely on a soluble mediator to decrease intracellular IFNγ and Foxp3, and may rely

• Prostaglandin signaling is required to reduce non-activated CD4⁺ T cell reaction to MSCs, as seen by increases in IFN γ and IL-10 when co-incubated with MSCs in the absence of

• Prostaglandin signaling is also required to reduce CD25 and IFNγ expression in activated CD4⁺ T cells, as contact co-incubations with MSCs were able to reduce expression of both CD25 and IFN γ , but co-incubations without prostaglandin were not.