

Uncovering the true phenotype of pathogen-reactive innate-like B cells

Hannah P. Savage^{1,2,3} and Nicole Baumgarth^{1,2,3}, Center for Comparative Medicine¹,
Immunology Graduate Group², and UC Davis School of Veterinary Medicine³, Davis, CA

Introduction

What are innate-like B cells?

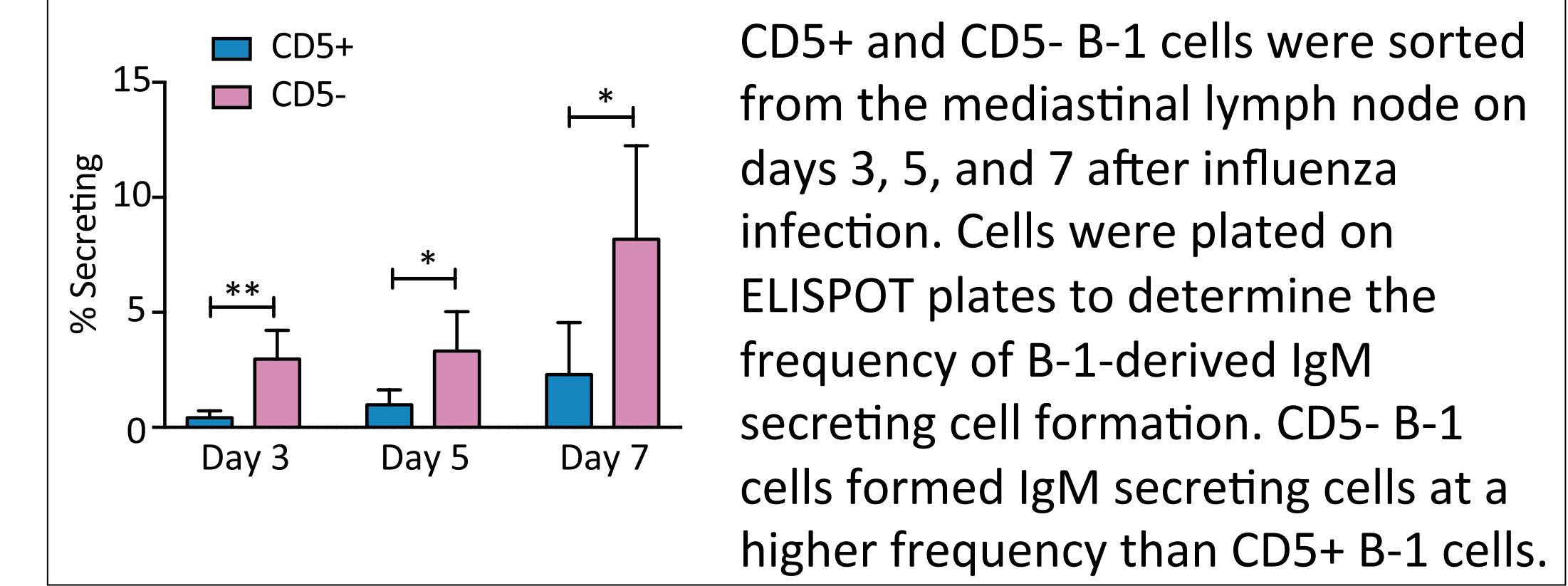
- There are two separate lineages of B cells:
 - Conventional B-2 cells: Part of the adaptive immune response to antigens
 - Innate-like B cells (B-1 cells):
 - Contribute to immune responses in an innate-like fashion by making "natural" antibodies without prior antigen exposure
 - Two subsets differentiated based on CD5 expression: **B-1a (CD5+)** and **B-1b (CD5-)**
- B-1 cells have homeostatic and immune defense functions
 - Natural antibody secretion (mainly IgM)
 - Secreted throughout life
 - Can bind to both self-antigen and to pathogens
 - Response to pathogens—both antibody production and accumulation of B-1 cells at the site of infection
 - Previous studies found IgM is secreted by **B-1b cells** in response to infections, including *Salmonella typhimurium*¹, *Borrelia hermsii*², and *Streptococcus pneumoniae*³.

B-1 cells during influenza infection

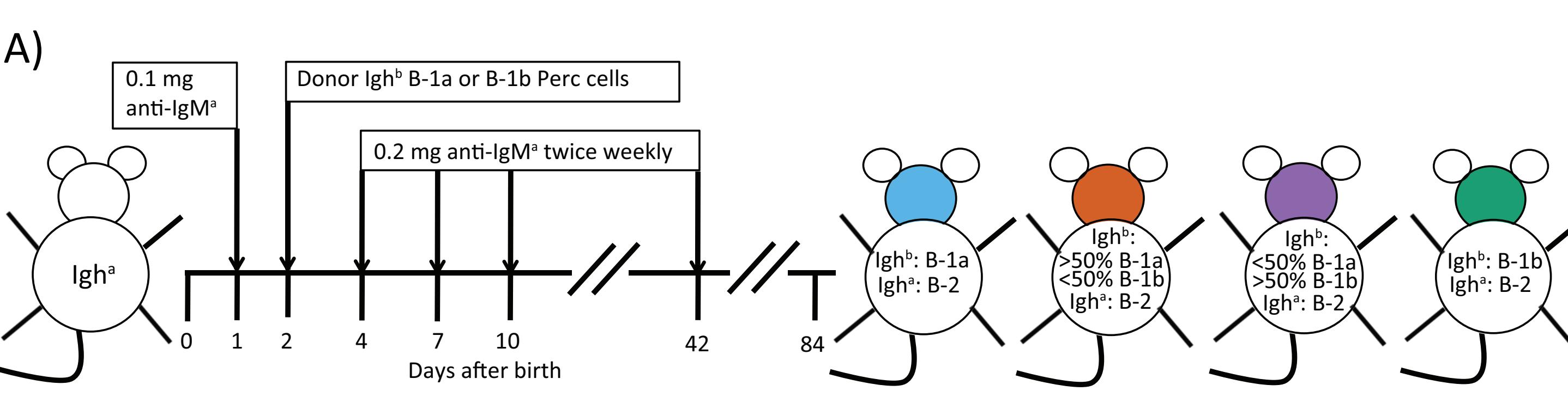
- We previously reported that **B-1a** cells, but not **B-1b** cells, migrate from the pleural cavity and accumulate in the draining (mediastinal) lymph node (MedLN) in response to type 1 interferons, secreted after influenza infection^{4,5}.
- Despite this, our preliminary data indicate that the main IgM-secreting B-1 cells in the MedLN after infection are **CD5-**.

B-1 cells are protective during many infections.
Identifying which B-1 cells respond after activation will contribute to the development of better prevention and treatment options for influenza and other infections.

Study Goals


Hypothesis:

B-1a cells activated by influenza infection lose CD5 expression and become "B-1b-like" IgM-secreting cells.


Aims:

- Examine whether B-1a cells in the regional lymph nodes (MedLN) downregulate CD5 expression after influenza infection.
- Examine IgM secretion by B-1a cells in the MedLN after influenza infection.
- Determine B-1a cells responses to *Salmonella* infection.

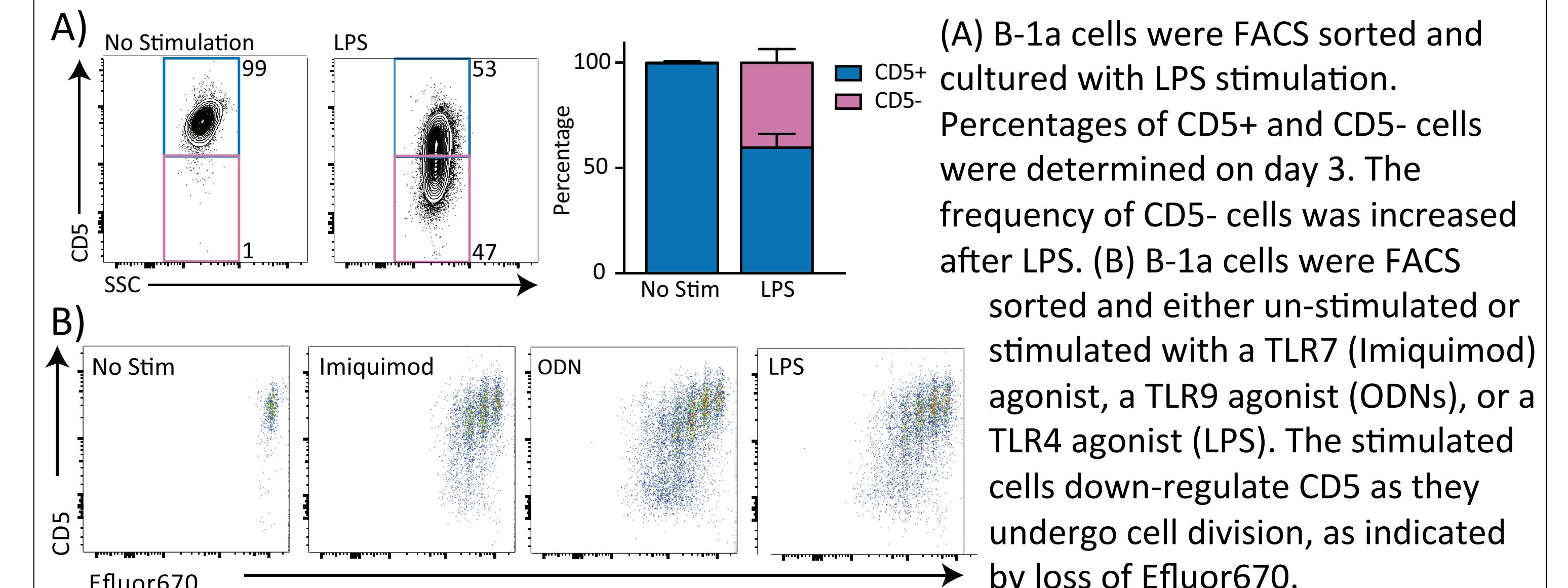

Figure 1: CD5- B-1 cells form more IgM-secreting cells than CD5+ B-1 cells in the Mediastinal LN after infection.

Figure 3: B-1a cells downregulate CD5 expression after influenza infection.

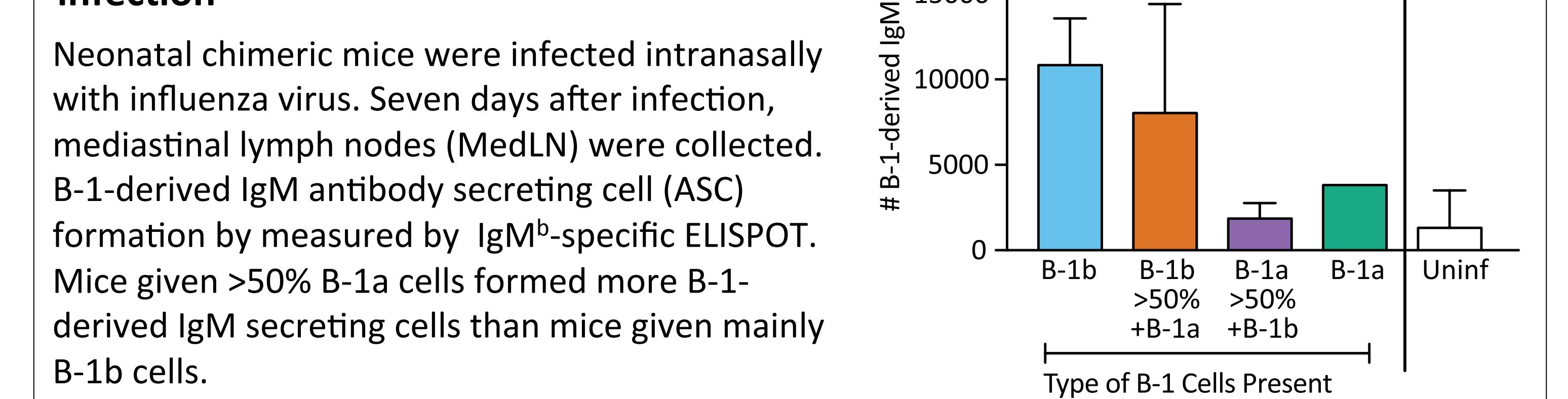
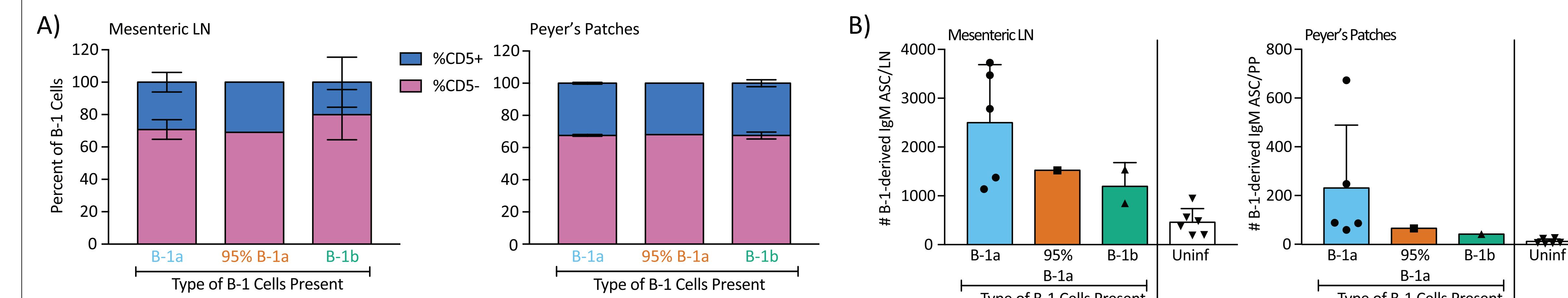


Figure 2: CD5 expression on B-1a cells is downregulated *in vitro* after stimulation.

(A) B-1a cells were FACS sorted and cultured with LPS stimulation. Percentages of CD5+ and CD5- cells were determined on day 3. The frequency of CD5- cells was increased after LPS. (B) B-1a cells were FACS sorted and either un-stimulated or stimulated with a TLR7 (Imiquimod) agonist, a TLR9 agonist (ODNs), or a TLR4 agonist (LPS). The stimulated cells down-regulate CD5 as they undergo cell division, as indicated by loss of Efluor670.


Figure 4: Mice receiving only B-1a cells formed B-1-derived IgM secreting cells after infection

treatment, mice were allowed to rest for 6 weeks to regenerate conventional B (B-2) cells. B-1 cells and B-1-derived IgM are IgM^b+, while B-2 cells and B-2-derived IgM are IgM^a+. (B) Neonatal chimeric mice were infected intranasally with influenza virus. Seven days after infection, mediastinal lymph nodes (MedLN) were collected and examined by flow cytometry. B-1 cells ("Dump" negative IgM^b+) were examined for CD5 expression. Mice were grouped based on whether they received only **B-1a**, only **B-1b**, **>50% B-1a**, or **>50% B-1b** cells. Note that all groups had similar % of B-1a and B-1b cells in the MedLN after influenza infection.

Figure 5: B-1a cells down-regulate CD5 and start secreting IgM after *Salmonella typhimurium* infection.

(A) Neonatal chimeras with either only **B-1a** cells, only **B-1b** cells, or **95% B-1a + 5% B-1b** cells were infected orally with *Salmonella typhimurium*. Five days after initial exposure, mesenteric lymph nodes and Peyer's Patches were collected and examined by Flow Cytometry and ELISPOT. B-1 cells ("Dump" negative IgM^b+) were examined for CD5 expression. Chimeric mice given only B-1a cells had significant populations of CD5- B-1 cells in their MesLN and Peyer's Patches after infection, similar to the populations seen in the other two groups. (B) IgM secretion by B-1 cells in the MesLN and Peyer's Patches of each group was also examined. Mice given only B-1a cells formed more B-1-derived IgM antibody secreting cells (ASC) than mice given B-1b cells.

Summary and Discussion

The results support our hypothesis that activated B-1a cells downregulate CD5 to become differentiated CD5 negative "B-1b"-like IgM-secreting cells after infection.

1) We found that mice receiving only B-1a cells have both CD5+ and CD5- B-1 cells in their lymph node after infection, suggesting a loss of CD5 on B-1 cells.

2) B-1a cells were able to form B-1-derived IgM secreting cells more effectively than B-1b cells in MedLN after influenza infection. Since we showed previously that CD5- B-1 cells are the main source of IgM after infection, this demonstrates that these CD5- B-1 secreting cells are likely B-1a-derived.

3) CD5-downregulation and IgM secretion by CD5 negative B-1 cells occurs also after *Salmonella* infection.

Several other infectious disease models have found CD5- B-1b cells to be the major source of infection-induced IgM. We re-examined one (*Salmonella*) and determined that the responding cells were initially B-1a cells that lost CD5.

Our studies increase understanding on the B-1 subsets that contribute to infection-induced immunity and thereby provide basic information important for the development of future vaccines or prophylaxes aimed at boosting immunity.

Finally, our findings call into question the dogma that B-1a and B-1b cells are two distinct B cell subpopulations. Instead, we propose that at least some CD5- B-1b cells are former CD5+ B-1a cells that have undergone activation.

Future Directions

We are repeating the *Salmonella* infections in chimeric mice to confirm our data.

We plan to examine the response of B-1 cells to OmpD, a *Salmonella* protein against which CD5- B-1 cells have been reported to generate protective antibodies.

References & Acknowledgements

- Gil-Cruz et al. (2009). PNAS 106(24): 9803-8.
- Alugupalli et al. (2003). J Immunol 170(7): 3819-3827.
- Haas et al. (2005). Immunity 23(1): 7-18.
- Waffarn et al. (2015). Nat Commun 6:8991.
- Choi et al. (2008) J Exp Med 205(13):3053-64.

Funding: NIH grants NIH/NIAID R01AI051354, R01AI085568 and U19AI109962 and T-32 AI060555