

Pharmacokinetics and Anti-inflammatory Effects of Intramuscular Corticosteroids

Juliana Sullivan, Heather K. Knych

K. L. Maddy Equine Analytical Pharmacology Lab, School of Veterinary Medicine, University of California, Davis

Introduction

- Betamethasone is a potent anti-inflammatory medication used both intra-articularly (IA) and intramuscularly (IM) for treatment of musculoskeletal inflammation in horses.
- Betamethasone prevents conversion of phospholipids to arachidonic acid and subsequent production of eicosanoids responsible for perpetuating the inflammatory process
- Administration of betamethasone can also suppress endogenous cortisol production.
- FDA approved equine product is formulated as a slow-release product, prolonging the pharmacologic effect.
- IA use in horses has been well-described but there are limited reports describing IM administration.
- Limited reports combined with widespread IM administration in performance horses necessitates further study to establish scientifically based withdrawal times prior to competition.

Objectives

- Describe plasma and urine concentrations, pharmacokinetics, and clearance of betamethasone following intramuscular administration.
- 2. Describe the duration of the pharmacodynamic effects of betamethasone by assessing concentrations of hydrocortisone and inflammatory biomarkers in an ex vivo model of inflammation.

Methods

Animals

- 12 healthy, university-owned, treadmill-exercised horses aged 4-7 years old Drug Administration
- 12 mg betamethasone administered intramuscularly in the neck
- Sample Collection
 Blood collected at time 0 (prior to drug administration) and up to 17 days
- post drug administration for determination of betamethasone, cortisol and eicosanoid concentrations (using ex vivo assay; Figure 1)
- Urine collected up to 408 hours post drug administration
- Concentrations determined using LC-MS/MS
- Pharmacokinetic Analysis using non-compartmental (Phoenix Winnonlin v8.2, Certara, Princeton, NJ)

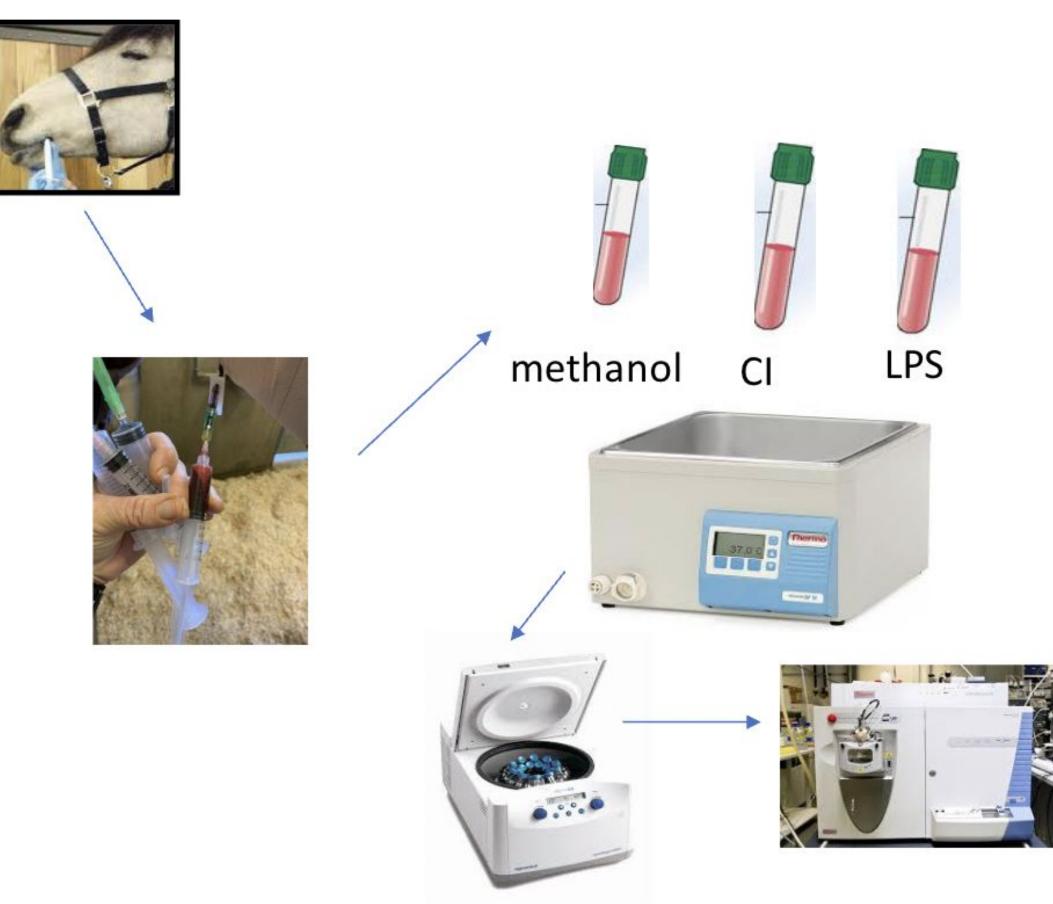
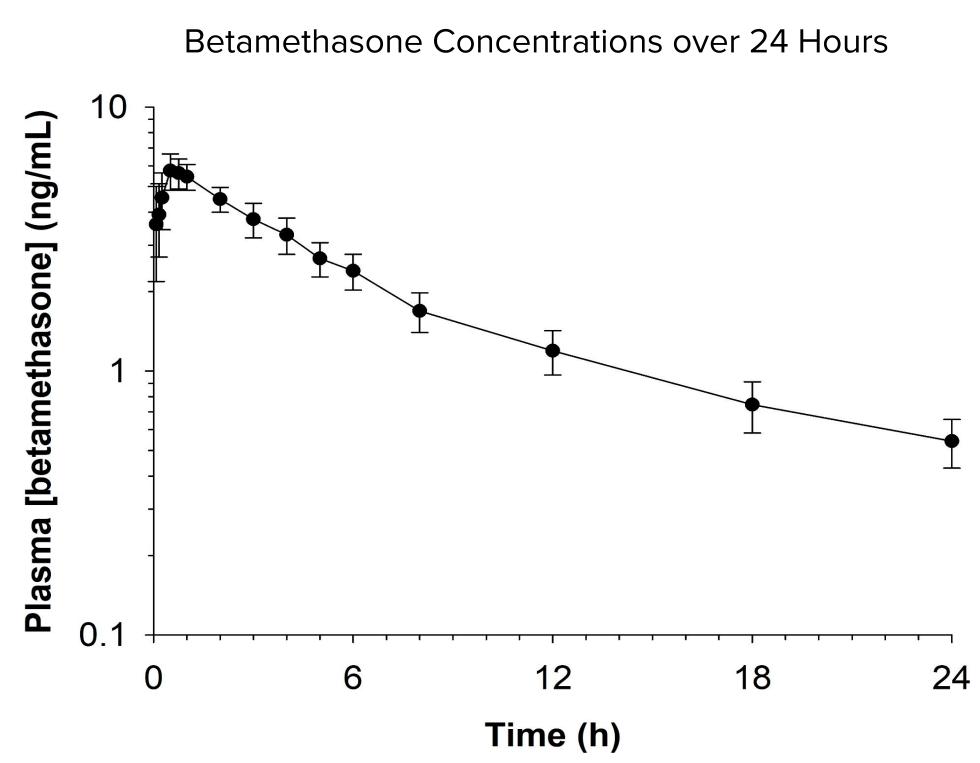



Figure 1. Method for Concentration Determination

Results

Figure 2: Betamethasone plasma concentration over time curve following intramuscular administration of 12 mg of betamethasone acetate/phosphate to 12 horses. This curve shows concentrations over the first 12 hours post administration.

Table 1: Pharmacokinetic parameters (mean and range) for betamethasone following intramuscular administration of 12 mg of betamethasone acetate/phosphate to 12 horses. All parameters were generated with non-compartmental analysis.

Pharmacokinetic Parameters	
Variable	Mean & Range
C _{max} (ng/mL)	5.92 (4.57-7.00)
T _{max} (h)	0.75 (0.5-2.0)
AUC _{0-∞} (h*ng/mL)	61.7 (49.5-74.0)
Lambda_z (1/h)	0.02 (0.007-0.043)
HL_Lambda_z (h)	44.3 (16.1-97.8)

Cmax: maximum plasma concentration; Tmax: time of maximum concentration; AUCinf: area under the curve extrapolated to infinity; lambda z: slope of the terminal portion of the curve; HL lambda z: terminal half-life.

0.00 1 0.001 1

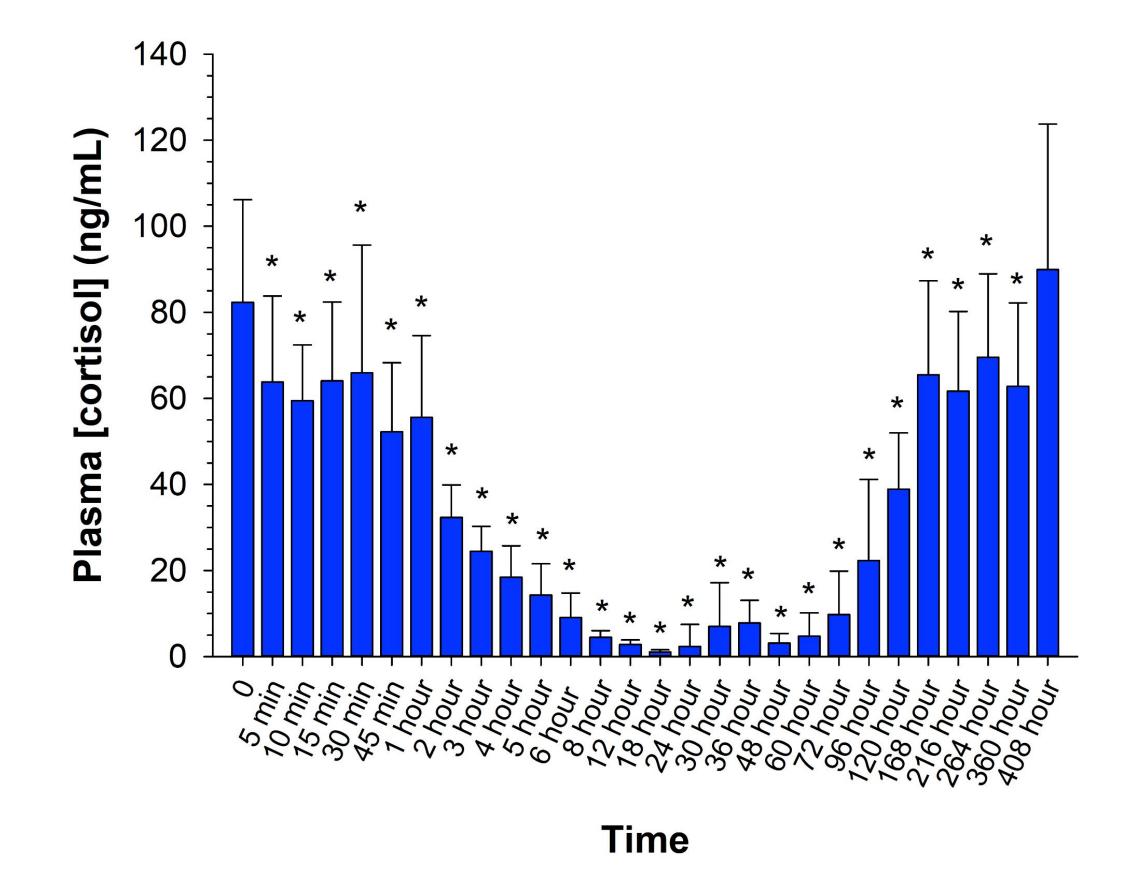

Betamethasone Concentrations All Time Points

Figure 3: Betamethasone plasma concentration over time curve following intramuscular administration of 12 mg of betamethasone acetate/phosphate to 12 horses. This curve shows concentrations up to 408 hours post administration.

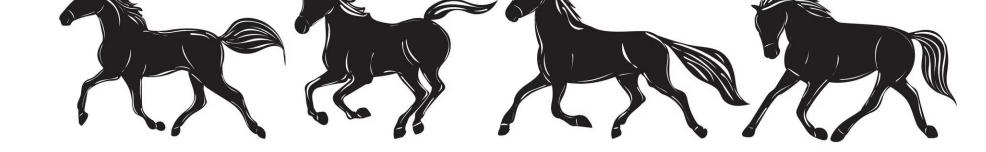
Time (h)

192 240 288 336 384 432

Cortisol Concentrations All Time Points

Figure 4. Plasma cortisol concentrations over time following intramuscular administration of 12 mg of betamethasone acetate/phosphate to 12 horses. Asterisks indicate a statistically significant (p< 0.05) difference, relative to baseline.

Conclusions


- Intramuscular (IM) administration of betamethasone results in sustained plasma concentrations and prolonged suppression of endogenous cortisol production.
- Prolonged residence time of betamethasone in the body is likely due to slow release resulting in a slower rate of absorption, relative to elimination (flip-flop effect).
- The prolonged detection time warrants an extended withdrawal time prior to competition in performance horses.

References

- 1. Granström E. The arachidonic acid cascade. The prostaglandins, thromboxanes and leukotrienes. *Inflammation*. 1984;8 Suppl:S15-25.
- 2. Keller-Wood M, Leeman E, Shinsako J, Dallman MF. Steroid inhibition of canine ACTH: in vivo evidence for feedback at the corticotrope. *Am J Physiol*. 1988;255(3 Pt 1):E241-246. doi:10.1152/ajpendo.1988.255.3.E241
- 3. Knych HK, Arthur RM, McKemie DS, Baden R, Oldberg N, Kass PH. Pharmacokinetics of intravenous flumetasone and effects on plasma hydrocortisone concentrations and inflammatory mediators in the horse. *Equine Vet J.* 2019;51(2). doi:10.1111/evj.13002
- 4. Knych HK, Stanley SD, Harrison LM, Mckemie DS. Pharmacokinetics of betamethasone in plasma, urine, and synovial fluid following intra-articular administration to exercised thoroughbred horses. *Drug Test Anal.* 2017;9(9):1385-1391. doi:10.1002/dta.2170
- 5. Knych HK, Vidal MA, Casbeer HC, Mckemie DS. Pharmacokinetics of triamcinolone acetonide following intramuscular and intra-articular administration to exercised Thoroughbred horses. *Equine Vet J.* 2013;45(6). doi:10.1111/evj.12059
- 6. Mangal D, Uboh CE, Soma LR. Analysis of bioactive eicosanoids in equine plasma by stable isotope dilution reversed-phase liquid chromatography/multiple reaction monitoring mass spectrometry. *Rapid Commun Mass Spectrom*. 2011;25(5):585-598. doi:10.1002/rcm.4893
- 7. Mangal D, Uboh CE, Soma LR, Liu Y. Inhibitory effect of triamcinolone acetonide on synthesis of inflammatory mediators in the equine. *Eur J Pharmacol*. 2014;736:1-9. doi:10.1016/j.ejphar.2014.04.013
- 8. Soma LR, Uboh CE, You Y, Guan F, Boston RC. Pharmacokinetics of intra-articular, intravenous, and intramuscular administration of triamcinolone acetonide and its effect on endogenous plasma hydrocortisone and cortisone concentrations in horses. *Am J Vet Res*. 2011;72(9):1234-1242. doi:10.2460/ajvr.72.9.1234

Acknowledgements

- I'd like to thank Dr. Heather Knych for mentoring this project, Stacy Steinmetz, Kirsten Kanarr, Meghan Traynham, & Gabby Nelson for technical help, and Dan McKemie, Sandy Wai-Mun Yim, & Jayanti Bhandari Neupane for assistance in the lab
- STAR funding provided by Center for Equine Health Endowment Funds
- Funding for this study provided by the AQHA and the California Horse Racing Board

