Characterizing the cardiac phenotype in Quarter horses with equine neuroaxonal dystrophy

Avery Mandel, Lauren Maas, Carrie Finno, Jessica Morgan

Morgan Equine Performance Lab, School of Veterinary Medicine, University of California, Davis
Equine neuroaxonal dystrophy (eNAD) is an inherited neurological condition. eNAD clinically resembles two human disorders: Ataxia with vitamin E deficiency (AVED) and Friedreich’s Ataxia (FA). Cardiomyopathy is reported in the majority of Friedreich's Ataxia patients, contributing to death in 83.3% of cases.

Objective: To characterize the cardiac phenotype of eNAD affected horses to improve understanding of the systemic effects of this condition.
Quarter horses with eNAD exhibit subclinical cardiomyopathy that manifests as myocardial thinning, a higher prevalence of arrhythmias, and histologic evidence of myocardial degeneration.
Aim 1: *In Vivo*

Aim 1: Define the cardiac structure and function in Quarter horses with eNAD as compared to unaffected controls using echocardiography, electrocardiography, and cardiac serum biomarkers.

- **Study population:** 7 eNAD suspect Quarter horses and 7 breed/age matched controls
 - Co-housed at the Center for Equine Health
Horse Summary

Control group
7 Quarter horses
3 mares, 4 geldings
Mean age: 12 years old
Mean BCS: 7
Mean weight: 576 kg

eNAD group
7 Quarter horses
4 mares, 3 geldings
Mean age: 9 years old
Mean BCS: 7
Mean weight: 533 kg
Methods: Bloodwork

University of Pennsylvania cTnI reference range: 0-0.07 ng/ml
Methods: Electrocardiography

- PR interval
- QRS width
- QT interval

24 hour Holter monitor
Methods: Echocardiography

- Full echocardiogram exam with 6 standard views in long axis (LAX) and short axis (SAX) from right side and left side long axis 2 chamber view
- Single lead ECG recorded simultaneously
- Views of interest:
 - Left outflow tract – aortic diameter
 - Short axis of L ventricle – linear M-mode
 - 2 chamber view – left atrial diameter
 - 4 chamber view – volume and area
Basic Conduction Factors

- **PR interval**
 - Control: Range
 - eNAD: Range

- **QRS width**
 - Control: Range
 - eNAD: Range

- **QT interval**
 - Control: Range
 - eNAD: Range
Arrhythmia Prevalence

VE Absent
VE Present

≤1 SVC/hr
>1 SVC/hr

of horses

Control eNAD

UC DAVIS VETERINARY MEDICINE
Cardiac Structure

RWT = [left ventricular free wall thickness in diastole (LVPWd) + intraventricular septal thickness in diastole (IVSd)]/left ventricular internal diameter in diastole (LVIDd)
Significance Summary

Cardiac troponin I quantification
Basic conduction factors
Heart rate variability
Arrhythmia prevalence
Cardiac function

No significant differences detected between the two groups

Cardiac structure: Horses in the eNAD group had a significantly decreased left ventricular free wall thickness \((p=.024)\) and significantly decreased relative wall thickness \((p=.047)\).
Aim 2: Identify evidence of changes in left ventricular mass, and accumulation of oxidative damage and apoptosis in the myocardium of horses with eNAD submitted for post-mortem evaluation compared to breed-matched controls.

- **Study population**
 - 14 eNAD affected cases and 7 unaffected controls
- **Immunofluorescence assays:**
 - Apoptosis (TUNEL, ROCHE In Situ Cell Death Detection Kit, Fluorescein)
 - Oxidative damage to DNA (anti-oxo-8-gaunine, Abcam).
Acknowledgements

Special thank you to:
Dr. Jessica Morgan
Dr. Carrie Finno
Lauren Maas
Dr. Alice Wong
Dr. Kevin Woolard
Katherine Sunderland
Clarissa Sunderland
Madeline Selecky
Center for Equine Health

Financial support was provided by the Students Training in Advanced Research (STAR) Program through the NIH T35 OD010956-22 grant and by the Center for Equine Health with funds provided by the State of California satellite wagering fund and contributions by private donors.
Methods: Echocardiography

- Interventricular septum (IVS)
- Internal diameter (LVID)
- Ventricular free wall (LVPW)
Methods: Echocardiography

Left outflow view – Aortic diameter

2 chamber view – Left atrial diameter
Heart Rate Variability

RMSSD (ms)
- Control
- eNAD

SDNN (ms)
- Control
- eNAD

SDANN (ms)
- Control
- eNAD

Root mean square of successive differences between normal heartbeats

Standard deviation of R-R intervals

Standard deviation of the average R-R intervals for each of the 5 min segments during a 24 h recording